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Landscape connectivity 
analysis and proposition of 
the main corridor network for 
the jaguar in South America
Large parts of the formerly continuous jaguar Panthera onca range have been lost or 
fragmented. We performed an analysis with Linkage Mapper to evaluate connectivity 
between all 92 patches of the 2020 jaguar range in South America. We used two 
Linkage Mapper tools: (1) the Linkage Paths to calculate the cost-distance values 
and to select least-cost paths as potential corridors for jaguar movements and (2) 
the Barrier Mapper to identify barriers along the potential corridors. We derived 
land-scape resistance values necessary for this analysis from the probabilities 
of jaguar occurrence estimated with species distribution models. Our analysis 
indicates that connectivity for jaguars is still good within the central Amazonian 
and Guiana Shield portions of the jaguar’s range. However, outside of this central 
core, connectivity between the fragmented jaguar populations is generally poor, 
e.g. in the Andes, Llanos, Atlantic Forest, Caatinga, and Cerrado. Barrier sections 
cover 21% of the area of potential corridors, and high resistance values were found 
on 30% of the corridor area. This situation is worsened by high road density around 
most barrier sections of the potential corridors. The Chocó region of north-western 
Colombia is likely isolated from the rest of the jaguar range in South America, which 
means that jaguar populations of Central America have no or minimal connections 
with the Amazonian populations. Similarly, the connectivity between fragmented 
jaguar populations in eastern South America (Caatinga, Cerrado, and Atlantic Forest 
eco-regions) is disrupted at several potential corridors, although some corridors of 
this region may still retain some potential to facilitate jaguar movement. Only 9% 
of the area of potential corridors are located within protected areas. Our results 
can guide planning for jaguar conservation action on a large spatial scale and help 
focus on sites where such efforts can be most effective and are most needed.

Habitat fragmentation is one of the main driv -
ers of species extinctions on a global scale. 
Fragmented, small, and isolated popula tions 
are vulnerable to demographic and mor-
tality factors and the effects of genetic  drift 
(Sinclair et al. 2006, Crooks et al. 2017). In 
addi tion, roads and traffic create additional 
bar riers to animal movement and cause in-
creased animal mortality (Benítez-López et 
al, 2010, Van Der Ree et al. 2011, Cullen et 
al. 2016). 
Ecological corridors are an important con-
servation tool that helps mitigate the neg ative 

effects of fragmentation on animal popula-
tions. These are special areas intended to 
maintain or restore ecological connectivity, i.e. 
movement of species and their populations, 
individuals, and genes (Hilty et al. 2011). The 
identification of corridors helps in conserva-
tion planning, especially in identifying con-
flicts with existing or planned infrastructure 
and planning mitigation measures e.g. animal 
passes (Forman et al. 2003, Glista et al. 2009, 
González-Gallina 2018), and also helps in 
direct ing the efforts of reforestation to restore 
connectivity (McRae et al. 2012).

The configuration of ecological corridors 
on the landscape is planned based on a de-
tailed analysis of existing connectivity. Such 
an analysis usually involves three important 
steps: (1) determining the core areas, i.e. 
the areas to be linked; (2) preparation of the 
resistance map (raster) assessing the poten-
tial for movement of individuals through the 
landscape; and (3) determining the most opti-
mal course of the corridors which ensure the 
highest probability of animal movements. If 
the goal is to plan corridors for a threatened 
species, the selection of core areas should 
take into account the distribution of all rele-
vant populations of that species, and in part-
icular of those at risk of isolation. Preparing 
an appropriate resistance raster is a crucial 
task for proper connectivity analysis. Land-
scape resistance values can be derived from 
habitat suitability or species distribution 
mod els based on data such as species indi-
vidual records or movements recorded by GPS 
teleme try (ref. Keeley et al. 2016, Carroll et 
al. 2020). It is also essential to consider area 
protec tion status in planning ecological corri-
dors. Efforts should be made to ensure that 
the largest possible part of the corridors is 
covered by legal area protection or included in 
spatial management plans (Hilty et al. 2011, 
Belote et al.2016).
Fragmentation of jaguar popula tions across 
Central and South America has been increas-
ing recently (Martinez Pardo et al. 2022, 
Jędrzejewski et al. 2017, 2018, 2023a), mainly 
driven by deforestation and habitat altera-
tion aimed at increasing areas of cattle pro-
duction, agricultural plantations, and human 
settlements (Petracca et al. 2014, Olsoy et al. 
2016, Menezes et al. 2021). The development 
of infrastructure, especially road networks, 
also leads to fragmentation and a corre-
sponding decline in the number of jaguars 
(Colchero et al. 2011, Espinosa et al. 2018). 
Understanding the importance of maintaining 
ecological connectivity for the persistence 
of jaguar popula tions has spawned several 
initiatives to plan ecological corridors in dif-
ferent parts of the jaguar's range (e.g. Morato 
et al. 2014, Sil veira et al. 2014, Stoner et al. 
2015, Martinez  Pardo et al. 2017, Thompson 
and Velilla 2017). Rabinowitz and Zeller (2010) 
analysed connectivity and proposed the first 
range-wide network of ecological corridors to 
connect all jaguar conservation units. 
In this paper, we present an analysis of the 
ecological connectivity for jaguars across 
South America as a follow-up to the updated 
analysis of jaguar distribution carried out as a 
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part of the IUCN jaguar conservation strategy 
(Berzins et al. 2023, Jędrzejewski et al. 2023 
a,b, Thompson et al. 2023). The main objec-
tives of this analysis were: (1) to assess the 
overall degree of connectivity between jaguar 
popula tions in South America; (2) to deter-
mine which populations are most isolated; (3) 
to propose a network of ecological corridors 
for jaguars; (4) identify the most important 
barriers within this network; and (5) to esti-
mate the role of existing protected areas and 
indigenous terri tories in maintaining connec-
tivity throughout the jaguar range. 

Methods
We estimated connectivity for jaguar popula-
tions in South America using two tools in 
Linkage Mapper v.3.0: Linkage Pathways 
and Barrier Mapper (McRae and Kavanagh 
2011, McRae 2012, McRae et al. 2012). Link-
age Path ways identifies least-cost linkages 
between core areas based on landscape 
resistance values and calculates the cost-
weighted distance values. Barrier Mapper 
identifies critical barriers within the least-cost 
corridors.

As core areas, we used all 92 separate poly-
gons representing the updated jaguar range in 
2020 (Jędrzejewski et al. 2023a, Supplemen-
tary Online Material SOM Dataset D1). The 
landscape resistance values (SOM Dataset 
D2) were calculated as the inverse (subtract-
ing from 1 and multi plying by 100) to the pro-
bability of jaguar oc currence estimated with 
the models present ed in Jędrzejewski et al. 
2023a. These models included several predic-
tive variables reflect ing the effect of natural 
and anthropo genic factors, such as precipitati-
on, mean tem perature, habitat productivity in-
dices, water abundance, forest cover, human 
popula tion density, the proportion of pastures 
and agri culture in the landscape, and road 
density. Models were run separately for each 
of the eight main ecoregions of South America 
to account for recently discovered genetic dif-
ferences between jaguar populations (Roques 
et al. 2016, Lorenzana et al. 2020) and poten-
tial variation in responses to habitat features 
unique to each ecoregion. To increase the ef-
fect of barriers on the cost-distance values in 
the analysis in Linkage Mapper, we squared 
resistance values (McRae 2012a, Keeley et al. 

2016) which resulted in the final cell values 
from 1 to 10,000.
We trimmed the mosaic normalised cost-dis- 
tance (“corridor”) map generated by Linkage 
Pathways to the values equal to or less than 
50,000,000, and we presented the result as 
a map of potential connectivity network that 
included all patches of the jaguar range and 
connecting corridors. We supplemented this 
map with the network of main rivers (https://
www.esri.com/arcgis-blog/products/product/
mapping/esri-data-maps/) to indicate that 
water courses are important for jaguar move-
ments and may provide additional movement 
opportunities (Silveira et al. 2014, Castilho et 
al. 2015, Azevedo et al. 2021, Eriksson et al. 
2022). Corridors connecting individual frag-
ments of the jaguar range were identified, 
sep arated from the entire connectivity net-
work, and transformed into polygons, treating 
them as a network of principal ecological cor-
ridors (SOM Dataset D3).
To assess the quality (permeability) of corri-
dors indicated by Linkage Pathways, we ran 
the Barrier Mapper and plotted the result-
ing bar rier values along the corridors (SOM 

Fig. 1. Jaguar range 2020 in South America shown against the 
values of landscape resistance for jaguar movements. Jaguar range 
2020 (SOM Dataset D1) consists of 92 separate polygons used as 
core areas in the connectivity analysis. Landscape resistance 
values (SOM Dataset D2) were calculated as the inverse of the pro-
babilities of jaguar occurrence estimated with species distribution 
models (Jędrzejewski et al. 2023, see Methods) and they synthesise 
an impact of several factors important for jaguar populations, such 
as climate, environmental productivity, water abundance, forest 
cover, human population density, the share of pastures and agricul-
tural crops, and road density.

landscape connectivity analysis

Fig. 2. Jaguar connectivity network selected with the Linkage 
Mapper as the areas with the lowest cost distance values (see 
Methods). This network includes: (1) the 92 pathes of the current 
(2020) jaguar range (SOM Dataset D1); and (2) the principal 
ecological corridors (SOM Dataset D3), connecting patches of the 
jaguar range. Banks of rivers and water reservoirs may provide 
additional linkages between fragmented jaguar populations, as 
indicated on this map. Numeration of the corridors is provided in 
the attribute table of the shape file in SOM Dataset D3. The network 
of the principal jaguar corridors proposed here can be farther 
developed at the regional or local levels.

https://www.esri.com/arcgis-blog/products/product/mapping/esri-data-maps/
https://www.esri.com/arcgis-blog/products/product/mapping/esri-data-maps/
https://www.esri.com/arcgis-blog/products/product/mapping/esri-data-maps/
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Dataset  D4). To the final map, we also added  
main and secondary roads (Meijer et al. 
2018, https://www.globio.info/download-
grip-dataset) to indicate which potential 
corridors between jaguar populations are 
most threatened by existing high-density 
infrastructure. To obtain another indica-
tor of the quality of potential corridors, we 
transferred the values from the resistance 
raster to each corridor and present ed the 
results on a separate map. To estimate the 
proportion of the connectivity network that 
is under legal protection, we laid maps of 
protected areas and indigenous territories 
over the obtained connectivity network and 
calculated the percentage of the overlap-
ping area (http://www.protectedplanet.net,  
Amazo nia Socioambiental RAISG 2019; htt-
ps://www.amazoniasocioambiental.org/es/
ma pas/#!/areas).

Jedrzejewski et al.

Results
In general, the overlay of the 2020 jaguar 
range and the resistance map indicated that 
connectivity for jaguars is still good within 
the core of its range (central Amazonia & the 
Guiana Shield), while outside, it is relatively 
poor (Fig. 1, SOM Datasets D1 & D2). Also, the 
nor malised cost-distance values cal culated 
with Linkage Mapper within all persisting 
patches of jaguar distribution were low, indi-
cating remaining good connectivity within the 
areas inhabited by jaguars. 
Linkage Mapper selected the best possible  
connections (least-cost paths with the 
lowest  cost-distance values) between and 
within the 92 patches of the jaguar range, 
producing a potential connectivity network. 
This network is complemented by the main 
rivers (Fig. 2). However, the analysis per-
formed with Barrier Mapper revealed that 

Fig. 4. Permeability within 
the jaguar connectivity 
network indicated by the 
direct superimposition of 
the resistance values (as 
in Fig. 1). Lower resistance 
values indicate higher 
permeability for jaguar 
movements.

Fig. 3. Barriers for jaguar 
movements within the 
connectivity network, as 
indicated by the analysis 
with the Barrier Mapper 
tool in the Linkage Map-
per (SOM Dataset 4).

outside the core jaguar’s range, connectiv-
ity was disrupted along the least cost paths 
(principal corridors) at many points. In ad-
dition, most of the corridors had some sec-
tions with high barrier values (Fig. 3). Over-
all, 45% of the area of corridors indicated 
by Linkage Mapper had low barrier values 
(high permeability), 34% medium values, 
and 21% high barrier values (Fig. 3). The 
superimposition of the values obtained from 
the resistance raster in the corridor network 
showed, in general, a similar situation along 
the corridors outside the patches of jaguar 
range (Fig. 4), with 26% of the corridor area 
with low resistance values (high perme-
ability), 43% medium, and 30% high values 
(low permeability). In contrast, within the 
jaguar’s range patches, the connectivity was 
generally high, with 95% of the area with 
low resistance values, 4% medium, and 1% 
high values (Fig. 4).
Connectivity between jaguar range patches 
was further worsened by the high density of 
roads, especially in trans-Andean corridors 
(e.g. in Colombia) as well as in the Atlantic 
Forest and Cerrado (eastern Brazil, Fig. 5). 
Some areas within the core of the jaguar 
range also had high road density, e.g. in Mato 
Grosso in Brazil and in Paraguay (Fig. 5). 
Frequent barrier sections along the potential 
corridors and high road density cut off 
several fragments of the jaguar range from 
the main central core. Among them was 
the Choco region in western Colombia and 
Ecuador and various patches of the jaguar 
range in eastern Brazil, Argentina, and 
Venezuela.
Protected areas and indigenous territories 
covered 49% (29% and 20%, respectively) of 
the total area inside the jaguar range patches 
(Fig. 6). However, only 9% of the area of the 
least-cost paths (principal corridors) was cov-
er ed by protected areas or indigenous terri-
tories (8% and 1% respec tively, Fig. 6).

Discussion
In this paper, we show the current connectiv-
ity status within and between jaguar popula-
tions in South America and propose a network 
of potential principal ecological corridors that 
may facilitate continued jaguar movement be-
tween exist ing patches. Our analyses demon-
strate that the central core of the jaguar’s 
range, located mainly in the Amazon basin 
and Guiana Shield, retains good connectiv-
ity. In contrast, the connectivity between the 
fragment ed parts of the former jaguar range 
has largely been lost due to habitat trans-

https://www.globio.info/download-grip-dataset
https://www.globio.info/download-grip-dataset
http://www.protectedplanet.net
https://www.amazoniasocioambiental.org/es/ma-pas/#!/areas
https://www.amazoniasocioambiental.org/es/ma-pas/#!/areas
https://www.amazoniasocioambiental.org/es/ma-pas/#!/areas
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Fig. 5. South America's 
major and minor road 
network as an additional 
factor in the fragmentation 
of the jaguar population in 
addition to the barriers 
within the connectivity 
network identified by the 
Barrier Mapper analysis.

formations and transportation infra structure 
development. Furthermore, most of the eco-
logical corridors selected by Linkage Mapper 
as the best options (least-cost paths) are 
inter rupted by frequent barriers that prevent 
or hinder jaguar movements and may lead to 
the isolation of some jaguar populations. 
Our results indicate that among those likely to 
become isolated from the central core is the 
jaguar population of the Choco region in Co-
lombia and Ecuador, which is an extension of 
jaguar populations in Central America. This 
means there is likely no longer any or very lim-
ited gene flow between the jaguar popula tions 
in the Amazon and Central America. Similarly, 
jaguar movement and genetic ex change may 
currently be disrupted in the east of the con-
tinent, within the Caatinga, Cerrado, and At-
lantic Forest ecoregions. However, not all of 
the corridors identified by our analysis are of 
equally poor quality. Some corridors have rela-
tively few barriers along their course, which 
may still offer favourable conditions for jaguar 
movement. Narrow bands of gallery and river-
ine forests, river valleys, and the banks of other 
bodies of water may offer ad ditional linkages 
between fragmented popula tions (Silveira et 
al. 2014, Castilho et al. 2015), and it would be 
advisable to conduct a more detailed analysis 
of their potential to serve as additional corri-
dors. Several local or regional connectivity 
analyses for various parts of the jaguar range 
have already been performed, e.g. for Argenti-
na, Paraguay, Bolivia, and Brazil  (Morato et al. 
2014, Silveira et al. 2014, Castilho et al. 2015, 
Paviolo et al. 2016, Por tugal et al 2019, Thomp-
son & Velilla 2017, Diniz et al. 2018, Wallace 
et al. 2020), and their results can be combined 
or compared with ours for a better understand-
ing of jaguar connectivity.
In our analysis, the landscape resistance 
values were derived from jaguar distribu-
tion models based on a large set of presence 
and absence points across South America 
and a broad set of predictive variables that 
included environmental and anthropogenic 
factors known to affect jaguars (Jędrzejewski 
et al. 2023a). Moreover, these models were 
conducted separately for eight main eco-
regions of South America to account for the 
genetic differences between jaguar popula-
tions (Roques et al. 2016, Lorenzana et al. 
2020) and possible adaptations to the unique 
ecological factors of each ecoregion. We be-
lieve this approach also increases the proba-
bility of correctly estimating the resistance 
values, resulting in improved connectivity 
assessment.

The loss and fragmentation of jaguar habi  tats 
are increasing (Menezes et al. 2021, Martinez 
et al. 2022), causing declines in jaguar popu-
lation size and genetic diversity (Haag et al. 
2010, Srbek-Araujo et al. 2018). Therefore, it 
is important to support conser vation and man-
agement efforts that halt further fragmenta-
tion of jaguar habitat and increase connectivity 
between habitat areas that have already been 
fragmented. In ad dition, restoration of some 
habitat patches within corridors (e.g. reforest-
ation) could re duce barriers and increase the 
permeability of some corridors (McRae et al. 
2012, Banks-Leite et al. 2020, Hilty et al. 2020). 
This recom mendation coincides with the 
Decade  on Ecosystem Restoration pro claimed 
by UN Environmental Program to promote Glo-
bal Ecosystem Restoration (UNEP 2021). 
Additionally, nominating important corridor 
fragments for legal protection is important 

(Hilty et al. 2020), as only 9% of the corridor 
areas are currently legally protected. Another 
critical action is the construction of animal 
passes wherever conflict between potential 
jaguar movements and existing or planned 
highways or other heavy traffic roads exist, 
both inside the jaguar inhabited areas or be-
tween them (Forman et al. 2003, Glista et al. 
2009, Jędrzejewski et al. 2009, Matthews et 
al. 2015, González-Gallina et al. 2018). The 
results  of our work can guide the planning of 
any of these conservation actions at a large 
scale and help focus on sites where such 
actions can be most effective and are most 
needed.
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