
Keywords: 1ZA/Acinonyx jubatus/antibodies/captive breeding/captivity/cheetah/cub/disease/maternal antibodies/research/vaccination/vaccine response/veterinary/virus

Abstract: Blood was collected from captive cheetah cubs (Acinonyx jubatus) from the ages of 4 to 12 wk and monitored for the decline in maternally derived antibodies to feline panleukopenia, herpes and calici viruses. A steady decrease was seen in most of the cubs. Antibody responses to inactivated and/or modified live virus (MLV) vaccine also were measured. The strongest responses were seen post vaccination with MLV vaccine only.
Decline in Maternal Immunity and Antibody Response to Vaccine in Captive Cheetah (Acinonyx jubatus) Cubs

J. A. Spencer* and R. Burroughs* *Department of Infectious Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Ondewerpe, 0001, South Africa; †857 Fiskal Street, Silverton, Pretoria, 0184, South Africa; ‡Author to whom correspondence should be addressed

ABSTRACT: Blood was collected from captive cheetah cubs (Acinonyx jubatus) from the ages of 4 to 12 wk and monitored for the decline in maternally derived antibodies to feline panleukopenia, herpes and calici viruses. A steady decrease was seen in most of the cubs. Antibody responses to inactivated and/or modified live virus (MLV) vaccine also were measured. The strongest responses were seen post vaccination with MLV vaccine only.

Key words: Acinonyx jubatus, cheetah, cubs, maternal antibodies, vaccine response.

In felines, passive transfer of maternal antibodies from the immune queen to her offspring was first discussed by Enders and Hammon in 1940. At that stage, investigators believed this transfer occurred across the placenta, as in man. However, the newborn feline receives the majority of its maternally derived immunity via the colostrum (Tizard, 1987).

Studies on the transfer and decline of maternal immunity have been conducted on the domestic cat by numerous workers. Scott et al. (1970) showed that the half life for maternally derived feline panleukopenia virus (FPLV) antibodies varied among kittens, but was similar in kittens of the same litter. Johnson and Povey (1983) showed that the level of specific antibody in maternal serum is a major factor in determining the amount of antibody transferred to the kittens. They also were able to demonstrate maternally derived antibodies to feline calicivirus (FCV) persisting for up to 14 wk. No similar studies have been done on nondomestic species and data from domestic cats have been assumed to reflect the situation in other felids.

As the time of effective vaccination depends on the disappearance of maternally derived immunity (Johnson and Povey, 1983), it is of critical importance to know when this occurs so that the most effective vaccination program may be implemented. This communication deals with the decline of maternally derived antibodies to feline viruses and the response to vaccination in captive cheetah (Acinonyx jubatus) cubs. An enzyme-linked immunosorbent assay was developed in order to determine antibody levels.

Captive cheetahs were housed in fenced enclosures at the De Wildt Cheetah Breeding and Research Centre (National Zoological Gardens, Pretoria, South Africa). Each litter is housed separately with their mothers until weaning. Ten cubs were bled from the medial saphenous vein while being physically restrained every 2 wk from 4 to 12 wk of age. The mothers were bled at the same time. Three cubs were bled prior to vaccination, 1 mo post vaccination with inactivated FPLV vaccine and then 1 mo post vaccination with modified live multivalent vaccine. Ten cubs were bled prior to vaccination and again 1 mo post vaccination with modified live multivalent vaccine. The vaccines used were (1) Felocine (SmithKline Beecham Animal Health, Private Bag X56, Halfway House, 1685, South Africa) containing inactivated FPLV and (2) Felocell (SmithKline Beecham) containing modified live FPLV, fe-
Table 3. Maternal antibody levels and percentage antibody transfer from adult female cheetahs as measured by ELISA.

<table>
<thead>
<tr>
<th>Mother</th>
<th>Virus</th>
<th>ELISA antibody titre</th>
<th>% Maternal antibody transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>FPLV</td>
<td>0.35</td>
<td>87</td>
</tr>
<tr>
<td>n cubs = 4</td>
<td>FHV</td>
<td>0.50</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>FCV</td>
<td>0.95</td>
<td>43</td>
</tr>
<tr>
<td>F3</td>
<td>FPLV</td>
<td>0.34</td>
<td>91</td>
</tr>
<tr>
<td>n cubs = 3</td>
<td>FHV</td>
<td>0.56</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>FCV</td>
<td>0.94</td>
<td>66</td>
</tr>
<tr>
<td>F22</td>
<td>FPLV</td>
<td>0.52</td>
<td>56</td>
</tr>
<tr>
<td>n cubs = 3</td>
<td>FHV</td>
<td>0.72</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>FCV</td>
<td>0.77</td>
<td>69</td>
</tr>
</tbody>
</table>

*Abbreviations and subscripts as in Table 1.

mowitz, 1976). Therefore, the level of specific antibody in maternal serum is a major factor in determining the amount of colostral antibodies passed to offspring. Unfortunately, the cubs could not be bled before 4 wk of age. Therefore, their neonatal antibody levels could not be determined. However, if the level at the first bleeding is considered, it can be assumed that initial levels were consistent with maternal levels.

The antibody levels in the cubs were seen to decrease steadily with time. In those litters where antibody levels remained stable (F3 and F22) or increased prior to vaccination (F3 and F22) one can assume that they must have been exposed to natural virus. There have been clinical cases of disease in unvaccinated animals in the past and feral cats were found on the property.

The antibody response to inactivated panleukopenia vaccine (litter F1) was negligible. The decrease in antibodies after administration of modified live vaccine may have been due to sequestration of existing antibodies (Macartney et al., 1988). The response in all the litters to MLV vaccine was good. Litter F6 showed the highest rate of seroconversion and this litter was vaccinated at 12 wk. Litter F1 was vaccinated at 16 wk and litters F3 and F22 at 10 wk. From this it would appear that 12 wk is the most favourable time for vaccinating cheetah cubs. The above study also has shown that modified live virus vaccines can be used with safety in captive cheetahs.

This study formed part of a Ph.D. thesis undertaken at the Veterinary Science Faculty of the University of Pretoria by J. Spencer. The authors wish to thank the staff of the De Wildt Cheetah Breeding and Research Centre for their co-operation, the University of Pretoria for financial assistance and E. Spencer for typing this manuscript.

LITERATURE CITED


SCHLAMOWITZ, M. 1976. Membrane receptors in the specific transfer of immunoglobulins from mother to young. Immunological Communications 5: 481–500.


Received for publication 5 December 1990.