
 

Schmieder J-U. 2000. Killing behavior in Smilodon fatalis (Mammalia, Carnivora, Felidae) based 
on functional anatomy and body proportions of the front- and hind limbs [dissertation]. 
Geologisches Institut der Eberhardt-Karls-Universität Tübingen. 83 p. 
 

Keywords: Acinonyx jubatus/anatomy/behavior/canine/Canis lupus/Carnivora/cheetah/ 
development/discriminant analysis/evolution/Felidae/hunting behavior/Mammalia/morphology/ 
paleontology/skull/Smilodon/Smilodon fatalis/wolf 
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were analyzed. Ratios of limb segment lengths have been shown to relate to functional and 
locomotory differences (e.g., cursoriality) in both extinct and extant felines. S. fatalis is equipped 
with relatively short and sturdy limbs. Moreover, it possessed a great angle of inclination of the 
olecranon fossa relative to the long axis of the humerus, in addition to a wide and laterally 
oriented radial notch. The radial head was more circular than in any other extant cat member. 
Additionally, the Teres major muscle inserts further away from the shoulder joint and the joints 
are more powerfully built and demonstrate a great amount of strength and flexibility. It is very 
likely that Smilodon preyed on the large contemporary megafauna because of its overall more 
powerful anatomy compared to that of modern felines. Nevertheless, it is still a matter of dispute 
exactly, which hunting method S. fatalis applied. It is suggested that its massive forelimbs were 
employed to grasp and hold large prey, which was then pulled down and finally killed or fatally 
wounded with a canine shear bite applied to the throat or abdomen. In contrast, the lightly built 
Acinonyx jubatus is found exclusively in low structured habitats, consequently it has the relatively 
longest limbs of all large felids, the smallest angle of inclination of the olecranon fossa and an 
insertion of the T. major closer to the joint. Its prey usually weighs less than its own body weight. 
Bivariate regression analyses on log-transformed limb segment lengths were employed to test 
overall differences and scaling variations in limb proportions. Multivariate  factorial- and 
discriminant analysis were performed on a number of limb dimensions of all the examined 
species. Results reveal that cats can accurately be distinguished into three different categories 
upon these ratios (even across taxonomic boundaries): 1. Highly cursorial felines like the 
cheetah, 2. Pantherine cats, including the puma, 3. Dirk-toothed cats such S. fatalis, and X. 
hodsonae (scimitar-toothed felid with the morphology of dirk-toothed cat). 
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Abstract 

 
Elongated canines exclusively evolved in carnivores, which are able to stabilize their 

victims with their anterior extremities.  It was shown that power and agility of the front limbs 
are strongly correlated with the development of sabers.  Limb- and skull proportions of the 
extinct cat Smilodon fatalis were therefore compared with those of six extant species of large 
felids and those of Canis lupus. Furthermore, differences in hunting behavior and locomotory 
capabilities were analyzed.     

Ratios of limb segment lengths have been shown to relate to functional and locomotory 
differences (e.g., cursoriality) in both extinct and extant felines.  

S. fatalis is equipped with relatively short and sturdy limbs.  Moreover, it possessed a 
great angle of inclination of the olecranon fossa relative to the long axis of the humerus, in 
addition to a wide and laterally oriented radial notch.  The radial head was more circular than 
in any other extant cat member.  Additionally, the Teres major muscle inserts further away 
from the shoulder joint and the joints are more powerfully built and demonstrate a great 
amount of strength and flexibility.   

It is very likely that Smilodon preyed on the large contemporary megafauna because of its 
overall more powerful anatomy compared to that of modern felines.  Nevertheless, it is still a 
matter of dispute exactly, which hunting method S. fatalis applied. It is suggested that its 
massive forelimbs were employed to grasp and hold large prey, which was then pulled down 
and finally killed or fatally wounded with a canine shear bite applied to the throat or 
abdomen.   

In contrast, the lightly built Acinonyx jubatus is found exclusively in low structured habitats, 
consequently it has the relatively longest limbs of all large felids, the smallest angle of 
inclination of the olecranon fossa and an insertion of the T. major closer to the joint.  Its prey 
usually weighs less than its own body weight.  

Bivariate regression analyses on log-transformed limb segment lengths were employed to 
test overall differences and scaling variations in limb proportions.  Multivariate factorial- and 
discriminant analysis were performed on a number of limb dimensions of all the examined 
species.  Results reveal that cats can accurately be distinguished into three different 
categories upon these ratios (even across taxonomic boundaries):   

1. Highly cursorial felines like the cheetah, 
2. Pantherine cats, including the puma, 
3. Dirk-toothed cats such S. fatalis, and X. hodsonae (scimitar-toothed felid 

with the morphology of dirk-toothed cat).   
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1 INTRODUCTION 

The purpose of this study is to compare limb proportions, different adaptations of limb 

anatomy, and features of the skull morphology in seven large living and extinct cats in order 

to determine whether functional differences due to morphological variation can be correlated 

with different hunting behavior.  Statistical studies should shed light on the relationship 

between development of the sabertooth canines and their forelimbs.  Furthermore, by means 

of statistical analysis, proportional differences are used to separate the various 

representatives into three distinct guilds. 

To begin with, a scant summary will be given of different theories proposed by a selected 

number of authors to clarify the problematic hunting behavior found in saber-toothed cats, 

which are based mainly on the morphology of the skull and cervical vertebrae. 

 

In many species of saber-toothed felines, in particular Smilodon, the upper canines had 

evolved into long, curved and laterally flattened sabers.  These more or less serrated canines 

were used for killing comparatively large prey, but opinions vary as to exactly how they were 

employed.  WARREN (1853) was one of the first to study behavioral implications of the saber-

toothed morphology.  He concluded that the elongated canines were used on prey in a 

stabbing mode with a following cut and tear action as the predator’s head was pulled 

backwards.  MATTHEW (1901, 1910) supported and elaborated the idea that the canines were 

used for stabbing.  He assumed that the specific action of the canines was to strike and then 

rip or gash so that the prey bled to death.  This hunting method was supposed to allow 

sabertooths to kill large, thick-skinned prey such as adult proboscideans. 

SIMPSON (1941) further polished this theory, and proposed a combined action of the head 

depressor and neck depressor musculature, supported by the inertia of the predators leaping 

body, to maintain the needed force for stabbing.  MILLER (1969) and SCHULTZ et al. (1970), 

who considered saber-toothed cats as active predators that used their canines in a stabbing 

mode as well, speculated that the powerful front limbs of these felines were used to 

immobilize their victims while the long sabers were applied to stab the prey animal. 

Some authors such as MARINELLI (1938) or BOHLIN (1940) on the other hand have 

rejected the stabbing theory and have tried to show that the sabers were ill adapted for this 

kind of function and must have served primarily for slicing.  Moreover, they both brought forth 

strong functional and anatomical arguments against a predator theory.  In this regard, they 

presumed that the sabers were not developed to withstand lateral forces, which would surely 

have occurred in the stabbing of a struggling prey.   

However, in spite of all various proposed hypotheses the most plausible and recent theory 

suggests that saber teeth were used to deliver a fatal shearing bite to the belly or throat of a 
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prey animal causing considerable loss of blood (AKERSTEN, 1985).  Thereby the mandible 

played an active role in killing by providing anchorage for a downward movement of the 

upper canines, which in turn was primarily powered by the atlanto-mastoid musculature.  

Further support for AKERSTEN’S model provided a recent analysis (BRYANT, 1996) of the jaw- 

adductor mechanics in Smilodon, suggesting that the strength of the neck muscle was 

necessary to compensate for a relatively low-out force of the jaw adductors at large gapes.  

DUCKLER (1997) interpreted the typical occurrence of parietal depressions found in skulls of 

Smilodon as a consequence of repeated strain on the temporalis muscle, which proposes an 

active task of this muscle in the killing, supporting a biting rather than a stabbing mode.  

Moreover, ANTÓN & GALOBART (1999) intensify the canine shear-bite theory on the basis of 

the neck function in Homotherium latidens. 

Behavioral investigations have shown that the method employed by carnivorans in 

catching and killing prey varies considerably between species (GONYEA, 1976).  Unlike most 

other carnivorans, the primary organ of prehension used to capture prey in felids has been 

found to be the claw equipped forelimbs. In this regard, the jaws and thus the canines are 

usually not involved in capturing prey, but function exclusively for killing.  In addition, many 

felids are capable of killing prey larger than their own body weight (LEYHAUSEN, 1965; 

SCHALLER, 1967; KLEIMAN and EISENBERG, 1973); a behavior that would be atypical for most 

other solitary hunting carnivorans, in which the jaws and not the forelimbs operate as the 

primary organ of prehension. 

Due to its importance in hunting behavior, the proportions of the extremities are mainly 

stressed in this study.  Skull proportions are compared with that of the anterior limb length in 

order to understand anatomical and allometric correlations of the post-cranial skeleton with 

that of the cranium. 

In addition, the elbow and wrist anatomy is analyzed, based on the studies of GONYEA 

(1978), of extant felids with that of Smilodon fatalis in order to clarify habitat preferences. 

Conclusions and interpretations are to some extent based on the author’s own research 

but rely heavily on an assessment of the literature as well. 
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Figure 1.1  (after TURNER & ANTÓN):  The illustration shows a schematic section through the neck of a 
typical horse, with the skull of Megantereon biting at the throat.  Notice how the vertebrae of the horse 
are arranged toward the back of the neck, and how near the surface of the throat are the windpipe and 
major blood vessels.  With the animal held immobile by the strong forequarters, even relatively 
superficial slashes into the neck would produce considerable blood loss and induce shock, and 
choking off the air supply would be relatively easy.  Such a technique would avoid the need for the 
violent and rather inaccurate stabbing implied by some older ideas about how sabertooths dealt with 
their prey. 
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2 PREVIOUS WORK 

The large body of literature on sabertooths deals mainly with systematics, while functional 

studies primarily focuses, with a few exceptions, on cranial morphology in particular on 

whether the elongated canines were used for stabbing, slicing, or active biting and whether 

saber-toothed cats were more likely to have been active predators or scavengers (see 

above). 

Post cranial morphology, in turn, particularly limb anatomy and limb proportions, are 

restricted to a handful of studies (GONYEA, 1976, 1978; V. VALKENBURGH, 1987).  Although 

most of the works that deal with sabertooth morphology point to the striking forelimb anatomy 

and its probable implicated function1, it is primarily the studies of V. VALKENBURGH (1987), 

TURNER & ANTÓN (1996) and especially GONYEA (1976, 1978) that focus exclusively on this 

matter of subject. 

GONYEA (1976a) compared body proportions of eight extant species of large felids in 

order to demonstrate the tied relations implicated between their morphology, habitat structure 

and habitat utilization.  The results indicate that cats found preferably in highly dense 

structured habitats2 have relatively, the shortest front limbs and lumbar spine and are 

capable to bring down prey that exceeds their own body weight.  The cheetah, in turn, is 

found in low structured habitats.  It has the relatively longest limbs and lumbar spine of the 

large felids and its prey is usually smaller than itself.  In other works GONYEA (1976b & 1978) 

compared the claw retractile mechanism for extant cats with that of saber-toothed felids and 

equated body proportions between living cats and extinct sabers.  He concluded that the 

claw retraction for saber-toothed felids was the same as that of modern felids.  The relative 

body proportions of Smilodon were found to be similar to modern felids of high structured 

dense forests.  GONYEA also introduced an elegant model of the elbow and wrist anatomy of 

different living felid species, particularly the shape and position of the olecranon fossa, which 

enabled him to conclude habitat preference.  His studies, in fact, have inspired much of this 

analysis.        

V. VALKENBURGH (1987) on the other hand, tried to assess the correspondence between 

locomotor function (climbing, digging, and running) and skeletal morphology in living and 

extinct carnivores.  He assigned four broad locomotor categories by means of olecranon size 

and orientation, astragalar shape, and manus and hind limb proportions, etc.  His results 

demonstrate that osteological indices are good predictors of locomotor behavior among living 

carnivores.  In an earlier study from 1985 he determined locomotor behaviors and diversity 

                                                 
1 See BOHLIN (1940); MARINELLI (1938); MARTIN (1980); MERRIAM & STOCK (1932); SCHAUB (1925); etc. 
2 Especially Panthera onca and Neofelis nebulosa 

 



Jens Schmieder Page 5 02.07.2003 

within past and present guilds from data of body weight, ungual shape, elbow shape and limb 

proportions of extinct and extant large predatory mammals.  Nevertheless, despite of the 

presented detailed studies, almost all of the authors who have worked with saber-toothed 

felids called attention to the extremely strong and sturdy front extremities (e.g. MERRIAM AND 

STOCK, 1932; ABEL, 1914; MARINELLI, 1937; MARTIN, 1980; et al.) concluding that they almost 

certainly ambushed their victims from concealment rather than pursuing them as cheetahs 

do.  

Analysis of cranial measurements from EMERSON & RADINSKY revealed several 

differences in skull morphology between saber-toothed cats and conical toothed felines, 

which mainly represent modifications for an increasing maximum gape.   Distinctions for 

sabers include:  relatively narrow zygomatic arches, a shorter distance between mandibular 

condyles and carnassials, relatively shorter and narrower temporal fossae, longer tooth row 

lengths, smaller orbits, smaller masseter and temporalis moment arms, reduced coronoid 

process, lower canines reduced and incisors more pointed and procumbent, and more 

upwardly rotated facial skull relative to braincase, etc.   

VAN VALKENBURGH & RUFF (1986) in turn compared canine lengths in different cat 

species, both modern and extinct, with skull lengths and discovered that felids, as a group, 

possess longer canines than do canids and hyaenids and that saber-toothed cats evidently 

have long canines relative to all living felids except for the clouded leopard (Neofelis 

nebulosa).  They concluded that the relative skull length is a good predictor of stress felt at 

the canines because of its close correlation with muscle size and moment arms. 
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3 OVERVIEW OF THE EVOLUTION OF LARGE CATS 

In order to improve the overall picture of the cat family it would be beneficial to the reader 

to have a short introduction in the fossil history of the felines and to present one reasonable 

way to classify their rather complex interrelationships.  The phylogeny of felids recently 

published by TURNER and ANTÓN (1996) is adopted here, and summarizes the views of 

previous authors (BEAUMONT 1978, 1990; TEDFORD 1978; MARTIN 1989).  Moreover, the 

recently discovered Xenosmilus hodsonae, found in Florida, appears to be a new design of 

saber-toothed cat and forces taxonomists to add a third category to the already existing two 

groupings.

 

Neofelids, also known as modern or true cats, are not recognized with certainty until 

around 30 Ma ago in Oligocene time (TURNER & ANTÓN, 1996) and the fossil record improves 

around 10 Ma ago close to the end of the Miocene.  Between their first emergence towards 

the end of the Miocene, a number of species enter the scene that are clearly catlike in their 

morphology.  These were formerly considered to be ancestral to true cats and thus were 

classified as the Paleofelids, or ancient cats.    

More recent studies however, suggest that these catlike animals differ enough from the 

modern cats to be considered a separate family, the Nimravidae (BRYANT, 1991).  The main 

anatomical characteristic used in making this distinction is the formation of the external 

auditory bulla.  In true cats the interior of the bulla is separated into two chambers by a 

septum, but Nimravids either lack the septum or the entire bulla, implying only a cartilaginous 

housing for the middle ear that has not fossilized (TURNER & ANTÓN, 1996).  Despite this 

distinction the Nimravids already possessed well-developed basic adaptations such as 

retractile claws, sectorial carnassials, reduction of the posterior molars, etc.  Nonetheless, 

the taxonomic position of the Nimravidae within the carnivore-family still remains a 

problematic issue. 

Modern or true cats first appear around 30 Ma ago in the Upper Oligocene of France with 

the genus Proailurus lemanensis.  This relatively small animal was very much cat-like in its 

appearance especially in terms of the skull shape and the form of its teeth.  However, the 

skull carried a much larger number of teeth compared to more modern cats 3.  In America the 

first recorded finds of felines are from Nebraskan Miocene deposits of about 16 Ma ago 

(HUNT, 1989).   

Approximately 20 Ma ago a feline named Pseudaelurus first appears in French Miocene 

deposits and forms the basal stock from which the group quickly diversified into a series of 

                                                 
3  A primitive feature in comparison with the reduced number of teeth seen in the dentition of more recent fossil 

specimen and in l iving species. 
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conical- and scimitar toothed cats (MARTIN, 1989).  The conical toothed cats include all 

modern true cats as well as their fossil ancestry. The scimitar toothed cats on the other side 

lead to the now extinct saber-toothed species, the machairodonts.  However, TURNER & 

ANTÓN (1996) point out that the genus Pseudaelurus lorteti and P. transitorius exhibit a more 

gracile and slender appearance than those of the genus P. quadridentalis, which is built 

more robust.  Hence they suggested a split in the tree of relationships at that point, with one 

line placed in the subgenus Schizailurus leading through to the fossil and living conical-

toothed species of true cats, and another placed in the subgenus Pseudaelurus leading to 

the saber-toothed species of the machairodonts. 

Figure 4.1 schematically demonstrates the relationships of the Felidae after TURNER & 

ANTÓN, (1996).  In this pedigree the conical toothed cats are split in the subfamily Felinae, 

whereas the extinct saber-toothed cats are classified in the subfamily status of the 

Machairodontinae.  The latter is divided into three tribes:  1. Homotheriini, 2. Metailurini, and 

3. Smilodontini. 

It should be noted however, that a very recent discovery, studied by BABIARZ, MARTIN et 

al. (1999) added a new intermediate member4 to the Machairodont subfamily, which 

combined scimitar-toothed canines with short, massive limbs of a dirk-toothed predator.  

Nonetheless, the first tribe of the subfamily the Homotheriini, also known as the scimitar-

toothed cats, are comparatively long-legged and slender and give the animal a particularly 

unusual appearance, somewhat reminiscent of a hyena.  Their canines are relatively short 

and coarsely serrated.  In some forms they may even have cheetah-like skeletal proportions 

(MARTIN, 1989).  They include the North American species of Nimravides catacopis found in 

Hemphilian deposits of Texas, Florida and Kansas, the Eurasian genus Machairodus of the 

Mio-Pliocene as well as the genus Homotherium of Europe and Asia, after which the 

subfamily is named. 

The questionable tribe of the Metailurini continues to be a source of confusion and 

disagreement regarding composition of the group and reconstruction owing to the fact that no 

complete skeletons nor intact skulls are yet known (TURNER & ANTÓN, 1996).  The 

specimens applied to this tribe are of later Miocene to earliest Pleistocene in age with a 

predominantly Eurasian distribution.  The majority was about the size of a modern leopard, 

with the upper canines moderately elongated and flattened (TURNER and ANTÓN, 1996).  

Important genera include Adelphailurus, Metailurus and Dinofelis. 

The tribe of the Smilodontini, to which the genus Smilodon belongs and towards which 

this study is focused, became famous through numerous individuals excavated in the 

Rancho la Brea tar pits in California, making them among the most well known of the ancient 

predators.  Bones from at least 1,200 individuals have been recovered there, and scattered 

                                                 
4 Xenosmilus hodsonae  
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about in museums throughout the world.  These dirk-toothed cats all possess finely serrated 

and long canines coupled with short legs built for power rather than speed (BABIARZ, MARTIN, 

et al., 1999).  Cats of the genus Smilodon were restricted to North and South America and 

have never been found in Eurasia. 

 

  
Figure 3.1:  Size comparison between S. fatalis (foreground) and S. populator (background).  The S. 
fatalis specimen is a subspecies found in Florida and is slightly smaller than the average Rancho La 
Brea samples (after TURNER & ANTÓN, 1996).  
 

Despite a complex history of names, three species are generally recognized.  The earliest 

is Smilodon gracilis, primarily known from the eastern part of the USA and dated between 

about 2.5 and 0.5 Ma.  It is the smallest of the species and thought to be most closely related 

to Megantereon (see below), its likely ancestor.   

Smilodon populator on the other hand was the largest of the three species and 

approximated in size a modern African lion.  It possessed enormously elongated upper 

canines that protruded well below the mandible:  the total length of large tooth specimens 

approaches 28 cm, perhaps 17 cm of which would have protruded from the upper jaw 

(TURNER & ANTÓN, 1996).  S. populator is a species found in the eastern part of South 

America (see Figure 3.1).   

Smilodon fatalis 5 of the Rancho la Brea asphalt beds was a relatively recent saber tooth, 

known mainly from the later Pleistocene of North America until the end of the last glaciation 

around 10,000 years ago when it finally went extinct.  It is generally intermediate in size, but 

with important differences from the South American species in skull and body shape and 

proportions (TURNER & ANTÓN, 1996).  In comparison to the African lion, the body of S. fatalis 

                                                 
5 Also known as Smilodon californicus 
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was about a foot shorter and the hind limbs appear relatively light while the front limbs are 

strong and powerful extremities.  The sturdiness and strength is likewise shown by the rib 

basket and breastbone (STOCK, 1972).  The lower segments of the limbs are relatively short 

in contrast to those in modern big cats.  It can therefore be assumed from an analysis of the 

structural features that these animals were not fleet-footed carnivores like the lion or the 

tiger.  They were probably ambush hunters that stalked their prey such as the slow-moving 

mammals with which they were associated during Pleistocene time.  

Other members of the tribe Smilodontini include the disputable genus of Paramachairodus 

as well as the genus Megantereon, which has been found in Africa, Eurasia and North 

America. 

The saber-toothed morphology has appeared independently among the Felidae, the 

Nimravidae, as well as in the extinct order of the Creodonta, and in the suborder of the 

Marsupialia. Thus the saber-tooth morphology is an excellent example of convergent 

evolution, since it appeared independently in several evolutionary lineages. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2:  Phylogeny of the Felidae after TURNER and ANTÓN (1996).  See text for further 
explanation. 

 

 

With the exception of the genus Homotherium, all these various types of sabers had very 

robust and short limb structures in common 6, a feature that clearly points towards the same 

                                                 
6 Although the Creodont Machaeroides and the Marsupial Thylacosmilus lacked retractable claws. 
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evolutionary function, namely to subdue and hold prey in a very catlike manner (RIGGS, 

1934; TURNER & ANTÓN, 1996).   

The following chapter is dedicated to summarizing different kinds of habitats, which cats 

prefer and how body proportions and limb anatomy are tied to habitat choice and hunting 

behavior.  Moreover, problems involved in making a concrete statement as to precisely how 

canine shape and forelimb anatomy are related to each other, are demonstrated.      
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4 MATERIALS AND METHODS 

2.1 Measurements  

Measurements in the present study are mainly based on the work of Angela von den Driesch 

(1976).  Total skull length  (SL) was measured as the distance between akrokranion and 

prosthion, total dental length (DL) as the distance between the condyle process and the 

infradentale.  Maximum skull width (SW), or the zygomatic breadth, extends from zygion to 

zygion.  The distance between the upper two canines (CD) is equal to the breadth at the 

canine alveoli.  Upper canine shape7 is characterized by three different measurements:  1. 

crown height (CH) measured from dentine-enamel junction at alveolar margin to tip; 2. 

antero-posterior diameter (CX) at base of the dentine-enamel seam; and 3. medio-lateral 

diameter (CY) at base of the dentine-enamel seam.   

The overall length of the humerus (GL) is identical to its greatest length; (Li) stands for the 

ratio to the inner lever of the attachment of the Teres major8;  (Bd) is equivalent to the 

greatest breadth of the distal end of the humerus, whereas (Bt) stands for the greatest 

breadth of the trochlea.  The muscle attachments of the Teres major on the inside of the 

humerus and on the distal edge of the scapula were somewhat hard to define and precise 

measurements specifically on the fossil specimen cannot be guaranteed.    

                                                 
7 Compare to V. VALKENBURGH , B and C.B. RUFF (1987) 
8 See HILDEBRAND, M. (1988) 

The radius was measured in its total length (GL), its greatest medio-lateral breadth of the 

distal end (Bd) and in its greatest antero-posterior breadth (Qr). 

Measurements of the ulna include the greatest length (GL), the greatest medio-lateral 

breadth (Bd) as well as the total antero-posterior breadth (Qr), and finally the length of the 

olecranon. 

The greatest length of the femur (GL) is often exceeded by the greatest length from the 

proximal caput femoris (GLC) by a few millimeters.  (Bp) is the greatest breadth of the 

proximal end and (Bd) corresponds to the maximum breadth of the distal end of the femur. 

Tibia measurements include the greatest length (GL) and the maximum transversal depth 

of the distal end (LT). 

The length was measured for the astragalus and the calcaneus as well as for the 

metacarpus and metatarsus.  Of the latter two, exclusively the third phalanges were taken. 
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Finally, two measurements were taken from the scapula:  1. the height along the spina 

scapulae (HS) and 2. the greatest length of the processus articularis9 (GLP). 

A caliper with vernier scale and a smaller dial caliper served as measuring instruments on 

the skeletons. 

One should bear in mind that for most osteological characters within species, coefficients 

of variation (V s) usually fall between about 4-6 % (MAC FADDEN, 1989).   

Since the number of specimens for this study was limited the data inevitably may lead to 

less representative results (see Statistical Analysis).   

Where more than one specimen was available from a species, mean values were 

calculated for each species so it was possible to work with one figure. 

X-ray computer-tomography was applied on the humerus, ulna, and femur for Smilodon, in 

order to determine strength and cross sectional outlines; for the ulna shape and position of 

the radial notch was established, and for the distal portion of the humerus the angle of the 

olecranon fossa was examined on the tomographic sections. The X-ray tomography was 

done in the Röntgen-Zentrum of the Universität Tübingen. 

 

2.2 Material 

Measurements were taken on six extant great cat species including the tiger (Panthera tigris; 

SZ3728, SZ3796), lion (Panthera leo; SZ3280, SZ7497, 6805), jaguar (Panthera onca; 

Mam.199), leopard (Panthera pardus; Mam.203, SZ4227, SZ7301), cougar (Felis concolor; 

Mam.198), and the cheetah (Acinonyx jubatus; Mam. 202, SZ3797) in addition to the wolf 

(Canis lupus) 10.  The material was provided by the osteological collection of the University of 

Tübingen.  The fossil material on the other hand, which is primarily restricted to Smilodon 

fatalis of the Rancho la Brea tar pits, was taken from the GPI in Tübingen. 

Published discriptions of Homotherium ischyros, H. serum  and Xenosmilus hodsonae 

(BABIARZ, MARTIN et al., 1999) were employed for morphological comparisons. 

Descriptions of musculature anatomy and muscle insertions in extant carnivores (NICKEL; 

SCHUMMER; SEIFERLE, 1977) were used as a guide for the reconstruction of certain muscles 

in Smilodon.   

Due to time constraints and the limited number of skeletons available the measurements 

on the specimens could not exclusively be carried out on one sex.  However, only adult 

                                                 
9 glenoid process 
10 see chart in appendix  
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individuals 11 were measured, and where possible, only the limb elements from the right side 

were measured.    

GONYEA (1976) pointed out that there is a significant added variance component among 

species for the relative lengths of both the anterior and posterior limb bones.  Moreover, 

sexual dimorphism in cats is markedly high.  In addition, various individuals of the same 

species living in a different habitat can vary considerably in size and to a lesser degree in 

their proportions as well.  If not explicitly labeled on the specimen, I was unable to identify 

possible occurring subspecies status in the material, although differences in morphology and 

lifestyle can reach tremendous differences regarding morphology, etc. 

This study is restricted to metric measurements, superficial features and X-ray CAT scans 

and does not attempt to be definitive or comprehensive.  The taxonomic breadth, sample 

sizes, and number of features examined are small.  However, it does suggest possible 

patterns and raises concerns that need to be addressed in future investigations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
11 Judged by closed epiphyses  
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5 RESULTS 

5.1 Limb Proportions 

Limb proportions are strongly correlated with hunting behavior and locomotion, which in 

turn is often expressed by the choice of habitat (GONYEA, 1976).  Furthermore, it is presumed 

that the development of long saber-like canines is dependant on strong and sturdy front 

limbs that would provide a larger insertion area for important muscles.   

In order to testify these theories it is necessary to compare various limb segments of 

different species with each other.  The table provided in the Appendix lists all measurements 

of the examined species.     

 

Humerus, Ulna, Radius, Metacarpus III:  Figures 5.2.1, 5.2.2 & 5.2.3 (top) 

The cheetah forms one extreme in having the longest and most lightly built limb bones of 

all the big cats, which enables it to run at very high speeds. 12  It should be noted that the 

relative length of its anterior limbs are significantly longer and less massive than it is for 

those felids that inhabit a more dense terrain (e.g., P. onca).  The cheetah has a radius/ 

humerus length ratio of ca. 1.0 and an ulna/ humerus ratio of about 1.16, which is almost as 

high as for the highly cursorial wolf (1.02 and 1.20).  This facilitates the animal a longer 

“forearm” in relation to its size.  In contrast, S. fatalis exhibits the shortest relative limbs with 

a radius/ humerus ratio of around 0.79 and an ulna/ humerus ratio of about 0.97.  The jaguar 

displays the shortest humero-radial and humero-ulna ratios among the living big cats with 

0.82 and 1.01 closely followed by the tiger, the cougar and the leopard, respectively.13  The 

lion has proportions that fall somewhat in between those of the cheetah’s and those of the 

other pantherine cats with ratios of approximately 0.90 and 1.04. 

Unfortunately, no data are available for the lengths of the radius of the fossil species of H. 

ischyros, H. serum, and X. hodsonae.  

The proportions between the humerus and the ulna however, are comparable to the 

humero-radial ratios.  The segment ratios of the humero-ulna lengths in H. ischyros 

approximate 1.10 and its relative H. serum reaches 1.05.  The recently discovered saber- 

toothed cat from the Irvingtonian of Central Florida Xenosmilus hodsonae on the other hand 

(BABIARZ et al., 1999) possessed an even shorter ulna relative to the humerus than S. fatalis 

with an index of ca 0.89.   

                                                 
12 See Table 1 
13 See Figure 5.2.1 and 5.2.4  
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Hind Limb Segment Ratios
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Figure 5.2.1:  diagrams illustrating the relative proportions of the humerus/ radius/ metacarpus (top) 
and femur/ tibia/ metatarsal (bottom) of the measured specimen plus fossil data (*) taken from the 
studies of BABIARZ et al. (1999).  Each species is shown with the humerus and femur scaled to the 
same length (100%), and the radius/ metacarpal - and tibia/ metatarsal length expressed as a 
percentage of the humerus- and femur measurements, respectively. 
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Relative Humerus Length
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Relative Femur Length

49.6

45.3

44.9

43.8

44.3

44.2

41.0

40.9

0 10 20 30 40 50 60

S. fatalis

P. tigris

P. onca

P. leo

P. pardus

F. concolor

A .jubatus

C .lupus

% Hind Limb

Femur
 

 

Figure 5.2.2:  relative length of both the humerus and the femur scaled to the limb length (100%), 
which is consisted of the humerus, radius, and metacarpal for the anterior limb and the femur, tibia, 
and metatarsal bones for the posterior extremity.   
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Humerus-Ulna Segment Ratios
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Figure 5.2.3:  Front limb section proportions between ulna and humerus (top).  Humerus scaled to the 
same length (100%).  Length comparison between hind- and front-limbs at bottom.  The hind limb is 
scaled to the same length (100%) and the front limbs are expressed as a percentage of the latter.  The 
anterior limb is calculated of the maximum lengths of the 3rd metacarpus, the radius, plus the humerus.  
The posterior limb is the sum of the 3rd metatarsus, the tibia, and the femur. 

 

      Figure 5.2.2 shows the relative length variations of the humerus to the overall length of 

the anterior limb.  It is conspicuous that Smilodon’s  humerus takes up almost half (49%) of 
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the length of the entire forelimb, whereas the cheetah’s humerus length is relatively short in 

comparison with 42.3%.  Among the living big cats, Panthera tigris comes closest to S. fatalis 

with a humerus length of 46.3%, followed by P. pardus, Felis concolor, P. onca and P. leo of 

which the humerus encompasses a length between 45-46%.      

Calculations showed that Smilodon, which has a radius-metacarpus ratio of 0.32, is very 

similar to the cheetah’s index of ca. 0.36.  P. onca, has an index of 0.40 similar to the lion’s 

(0.39), leopard’s (0.42) and tiger’s (0.41) proportions.  F. concolor in turn, exhibits a ratio of 

0.44 and thereby falls slightly behind C. lupus.   

Comparisons between metacarpal length and humeral length revealed (see Figure 5.2.1), 

that in all of the extant cats studied, there is only a minimal deviation of the metacarpus 

length, which lies in between ca. 0.33 in the jaguar and 0.365 in the puma and cheetah.  

Smilodon again forms an exception in having a metacarpus/ humerus ratio of 0.25.   

 

Femur, Tibia & Metatarsus III:  Figures 5.2.1 & 5.2.2 (bottom) 

The cheetah exhibits the relatively highest posterior limb ratio of almost 1.01 followed by 

the leopard with 0.93, the puma with 0.88, the jaguar closer to 0.87, and the lion and tiger 

both with a femur/ tibia index of 0.86.  On the opposite, the two fossil genders of 

Homotherium have even smaller ratios closer to 0.83 – 0.84, and X. hodsonae and S. fatalis 

show tendencies of extreme shortening of the tibia bone against the femur, in which S. fatalis 

has a ratio of 0.75 and X. hodsonae one of 0.79.  

On the other hand, if the proportions between the femur and the metatarsus are 

compared, as shown in Figure 5.2.1, it is striking that the cheetah, although having a 

relatively short metacarpus for the extant cats, exhibits the longest metatarsus with a ratio of 

almost 0.43, which is very close to the wolf’s femur/ metatarsus ratio of 0.433.  The mountain 

lion’s quotient of 0.38 is only slightly higher than its humerus/ metacarpus ratio and is 

followed by the leopard (0.372), the jaguar (0.359), the lion (0.357), and the tiger (0.35).  

Smilodon once more shows the lowest extreme with a ratio of approximately 0.26.  In 

addition, the proportions between tibia and 3rd metatarsal (not illustrated) also display 

eloquent dissimilarities among the studied felids, but with different stresses in the species 

when compared with the anterior limb. The puma is observed in having the highest ratio of 

0.43 equal to the wolf’s proportions, in contrary to Smilodon, which exhibits an index of 0.35.  

The remaining species rank relatively close together in the following order:  cheetah (0.417), 

jaguar (0.414), lion (0.413), tiger (0.407), and leopard (0,398). 

Equivalent to the relative length of the humerus with its corresponding anterior limb length, 

the relative portion of the femur against the posterior limb length, is also greatest in Smilodon 

with 49.6%, followed by the tiger (45.3%), jaguar (44.9%), leopard (44.3%), the puma 
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(44.2%), and lion (43.8%).   Likewise, A. jubatus has the shortest relative femur length, which 

makes up only 41 % of the whole extremity equal to those of the wolf.   

Figure 5.2.3 indicates that the anterior extremities of F. concolor are comparatively shorter 

(81.4%) than the length of the posterior limb.  This difference is relatively greater than that of 

the other large felids investigated: P. tigris (87.4%); P. leo (92.3%); P. onca (89.1%); P. 

pardus (86.5%); A. jubatus (87.3%); S. fatalis (92.5%).  Nonetheless, all of the specimen 

studied, are characterized by longer hind limbs than front limbs. 

 

Calcaneus:  Figure 5.2.4 

Smilodon possesses the longest relative length for the calcaneus with a percentage of 

35.1.    The lion (33.3%), tiger (32.5%), and jaguar (31.6%) all range within close boundaries 

followed by the leopard, which has a calcaneus that makes up 29.2% of the tibia.  The puma 

on the other hand exhibits a rather short calcaneus (30.5%).  For the cheetah it makes up 

only 27% of the tibial length, whereas for the wolf the calcaneus has an index of 27.9%.  

 

Olecranon:  Figure 5.2.5 (top) 

The cheetah was observed in having a relatively short olecranon compared to the ulna 

with a ratio of 10.4, followed by H. serum  (13.2) and the wolf (13,7).  The pantherine cats on 

the other hand, like the lion, the olecranon makes up to 18 % of the entire ulna length.  The 

jaguar and the puma exhibit percentages that are closely together with ratios of 

approximately 0.19, followed by Smilodon and X. hodsonae both with a ratio in the vicinity of 

0.17.  At last the tiger and leopard both have ratios of ca. 0.16.    

 

Caput Radii:  Figure 5.2.5 (bottom) 

Canis exhibits the lowest approximation to a circular shape of the proximal radial head 

with a ratio of 0.69, the cheetah is only little behind the wolf with 0.74%. The tiger and jaguar 

are followed closely by the cheetah with ratios of about 0.73.  The cougar in turn falls only 

slightly behind Smilodon with an index of ~ 0.77.  The leopard surpasses the lion with a 

quotient of approximately 0.77 in contrast to 0.75.  In general can be said that the radial head 

within the Felidae was found to vary arbitrarily for different species except for the cheetah, 

but at the same time shows tendencies for a more elliptical shape than that of the canids 

(see also GONYEA, 1978). 

 

Radial Notch:  Figure 5.2.7 

The figure illustrates diagrammatic cross-sections of the radial notch for the right ulna and 

demonstrates that the cursorial cheetah exhibited a lateral position of the radial notch 
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whereas the dog’s is facing more anteriorly.  Smilodon exhibited the largest angle of 

inclination of around 65?, whereas the rest of the big cats more or less range within 50?. 

 

Olecranon Fossa:  Figure 5.2.8 

P. onca and N. nebulosa were recorded with the largest angles for the olecranon fossa 

with 14? of the large living felids, whereas the degree of inclination for the cheetah has the 

lowest angle (3?) of any felid.  Both the lion and leopard were observed with angles of ca. 

13?.  Unfortunately, no data are available for the tiger and cougar.  Figure 5.2.7 illustrates the 

various angles of the olecranon fossa for the dog, cheetah, margay, and Smilodon.  The 

latter is observed in having the greatest angle of approximately 20? to the long axis of the 

body.   
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Figure 5.2.4:  Relative length comparison between tibia and calcaneus.  Tibia is scaled to 100%, but 
only calcaneus is shown on this chart.  
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Relative Length of Olecranon

10.4

13.4

18.6

18.9

18.0

15.9

13.2

17.3

16.7

15.5

0 5 10 15 20 25 30

S. fatalis

X. hodsonae

H. serum

P. tigris

P. leo

P. onca

P. pardus

F. concolor

A. jubatus

C. lupus

% Ulna

Olecranon
 

 

Shape of Proximal Radius 

74.4

77.4

75.3

73.1

78.4

76.6

69

73.6

0 20 40 60 80 100

S. fatalis

P. tigris

P. onca

P. leo

P. pardus

F. concolor

A. jubatus

C. lupus

% BP

Qr
 

 

Figure 5.2.5:  Relative length comparison between the total ulna length and its corresponding 
olecranon length (top) and the cross-section of the Caput radii (BP = 100% versus Qr). 
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Distal Humerus Comparison
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Figure 5.2.6:  Proportions between the Condylus of the humerus (Bt) and its distal breadth (Bd).  Bd 
scaled to the same length (100%), while Condyli are expressed as a percentage of the latter.  
 
 
 

 

 

 

 

Figure 5.2.7:   Diagrammatic cross-sections of the right ulna illustrating the orientation of the plane of 
the radial notch.  All figures are reduced to the same size (after GONYEA , 1978). 
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Humerus, Distal:  Figure 5.2.6 

Measurements of the distal humerus include its greatest width against the maximum 

extension of the Condylus humeri14.  The latter is one of actually three joints that form the 

elbow joint, which builds a hinge-like articulation with the trochlear notch of the ulna.  The 

differences regarding the relative strength of the humeral trochlea against its distal width 

show only slight variation between species.  However, the cougar is shown to have the 

lowest ratio of 0.63 falling right behind the jaguar, which has an index of 0.637.  S. fatalis has 

a relatively narrow epicondyle as well (0.645), which is even smaller than that of the wolf 

(0.66) and the cheetah (0.67).  The tiger is observed in having the highest ratio (0.684) 

before the leopard (0.675) and the lion (0.662).  The wolf, which broadly resembles the 

cheetah in habitat preference and limb proportions, has an index of 0.66 in comparison but 

rather shows similarities to the leopard and lion.   

 

                                                 
14 trochlea 

22
o

o

Figure 5.2.7:  Illustrations of the posterior surfaces of the left humerus of representative carnivorans
demonstrating the position of the olecranon fossa relative to the long axis of the humerus.
For comparative purposes, all figures are reduced to the same size (after Gonyea).

 C. familiaris        A. jubatus             F. Wiedii                 S. Fatalis

3 o
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Tibia, Proximal:  Figure 5.2.8 (top) 

The proximal portion of the tibia (condylus lateralis and medialis), which forms the knee 

joint and articulates with the corresponding distal femur (condyli femoris), is shown in Figure 

5.2.8.  Its length was compared with that of the tibia length.  It is S. fatalis (29.5%), P. leo 

(27.2%), and P. onca (27.0%), which have ratios that clearly exceed those of A. jubatus 

(21.0%) and C. lupus (21.8%).   The exception is found in P. pardus (22.5%), which is only 

little above the index of the wolf.  P. tigris (24.6%) and F. concolor (24.0%) are intermediate 

in their proportions. 

 

Femur, Proximal:  Figure 5.2.8 (bottom) 

Positioned laterally of the Caput femoris lays the Trochanter major.  The results indicate 

that the Trochanter major exceeds the opposing Caput femoris with only a lightly by about 

0.05 cm in the jaguar and 0.65 cm in the cougar.  The wolf and S. fatalis in turn, exceed the 

opposing femoral joint with around 0.2 cm (see Appendix). 

The overall width of the proximal head of the femur between Trochanter femoris and 

Caput femoris is plotted in Figure 5.2.8 together with the ratios of its distal ends.  It is mea-

sured against the femoral length.   Smilodon is observed in having a relatively long proximal 

head with a percentage of over 26%, followed by the lion with almost 25%. The jaguar’s 

proximal end takes in 23.5%, the wolf’s 23.4%.  The tiger, leopard, puma, and cheetah show 

a relatively low percentage compared to the femur with ratios between ca. 0.22 and 0.20, 

respectively. 

 

Scapula:  Figure 5.2.9 

A most apparent feature seen in this chart is that the wolf exhibits the relatively broadest 

glenoid process compared to its shoulder length of all the investigated species.  The cheetah 

on the opposite shows the lowest degree of enlargement, whereas the rest of the cats more 

or less move within the same range between the wolf and cheetah.  The problematic 

insertion area of the T. major muscle on the lower distal margin of the scapula is best 

developed in fast running cats of a more open terrain such as F. concolor (0.41), A. jubatus 

(0.381), and P.leo (0.353), but also the tiger shows ratios identical to the lion.  Forest 

dwellers as P. onca have ratios that range in between 0.27 – 0.28.  P. pardus is a little above 

this figure compared to the latter two with an index of 0.302. 
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Prox. Tibia head vs Tibia Length
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Figure 5.2.8:  ratio between the width of the proximal tibia, which is part of the knee joint, and the tibia 
length (above).   Comparison between distal-and proximal maximum breadth of the femoral joints 
(below) scaled against femur length. 
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Scapula Ratios 
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Figure 5.2.9:  proportions of glenoid process and assumed Teres major muscle attachment area of 
the scapula.  Scaled to the maximum length of the scapula (compare Figure 3.2.2). 
 
 
 
Teres major: 

Figure 5.2.10 demonstrates the reconstructed insertion areas of the T. major muscle on 

both the scapula and the humerus inferred on the basis of superficial scars or delimitable 

surfaces.  The results indicate, that A. jubatus, as the fastest land animal, exhibits a T. major 

attachment scar closer to the joint than any other cat or the wolf (see Figure 5.2.10 and 

Table 5.2).  S. fatalis in comparison, is shown to be the exact opposite with a T. major 

muscle attaching far away out from the shoulder joint.  The pantherine cats range relatively 

close within 2.68 and 3.00 between the latter two, while the cougar goes towards the cheetah 

and wolf with a T. major attaching relatively close to the joint. 
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GL/ Li GL/ T. major
S. fatalis 2,42 13,9%
P. onca 2,68 13,6%
P. leo 2,77 17,0%
P. tigris 2,69 15,2%
P. pardus 3,00 15,9%
F. concolor 3,32 15,4%
A. jubatus 4,02 14,4%
C. lupus 3,35 14,6%  

 

 

 

Humerus Cross-Section:  Figure 5.2.11  

An index for the ellipticity of the shaft is obtained by dividing the minimum diameter by the 

maximum diameter at midshaft (TAYLOR, 1974).  Thereby a figure of 100% indicates a 

circular cross-section or zero ellipticity.  The shaft of the humerus in Smilodon was x-rayed in 

order to exemplify its cross-sectional outline and the strength of its bone wall (see Figure 

5.2.11).  It is striking that the midshaft cross-section is distinctly laterally compressed in 

Smilodon (76%).  The bone wall of the femur in turn, doesn’t seem to be extraordinarily 

massive, except in the y-plane it appears to be stronger in thickness. 

                                                                                            

Cheetah ( )Acinonyx

GL
Li

= 4.01

GL

Li

GL
Li

=  2.72

GL GL

Li

Lion ( )Panthera Smilodon fatalis

GL 
Li

= 2.46

Li

 
Figure 5.2.10:  Contrast between insertion 
of the Teres major on the humerus of A. 
jubatus (left), P. leo (middle), and S. fatalis 
(right).  The ratio of the out-lever (GL) to the 
in-lever (Li) is greater for cursors (after 
Hildebrand). 
 
Table 5.2:  Ratios for all of the studied 
carnivores (left) and percentage of T. major 
insertion area  against humerus length. 
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Figure 5.2.11:  Cross section through the 
midshaft of the humerus of S. fatalis.  Note 
the laterally compressed outline in the 
antero-posterior plane. 
 
Y = 4,62 cm;  x = 3.33 cm (= 72.1 %) 
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5.2 Skull Proportions 

The proportions of skull characteristics are restricted to a handful of comparisons in the 

present study, since a lot of studies especially those of EMERSON & RADINSKY (1980) 

concentrated exclusively on the cranial morphology also by means of morphometric length 

collations. 

However, it is beneficial for this work to add cranial to post-cranial length proportions since 

length increase or decrease of sections in both body portions seem to some extent be 

strongly correlated with each other.  

Studies from EMERSON & RADINSKY (1980) exemplified various adaptations in skull 

morphology between saber-toothed cats and conical toothed felines, which mainly represent 

modifications for an increasing maximum gape (see Chapter 2).  

VAN VALKENBURGH & RUFF (1986) compared canine lengths in different cat species with 

skull lengths.  They concluded that the relative skull length is a good predictor of stress felt at 

the canines because of its close correlation with muscle size and moment arms. 

Measurements in the present study include comparisons between skull length against 

skull width and canine length, skull width with canine distance (Figure 5.3.1), skull length 

against dental length, and cross-section of canines with canine height (Figure 5.3.2).  

 

Canine Length & Skull Width:  Figure 5.3.1 (top) 

Of course, it is easy to recognize that S. fatalis has the longest canine teeth relative to the 

skull length, thus its name, while C. lupus has the shortest ratio of 0.122 in comparison.  The 

rest of the modern cats range in between 0.132 in the cheetah up to 0.156 in the tiger.   

The relative skull width was also correlated with the skull length.  Thus results may be 

broadly similar for one or the other study objects.  This is true at least for the wolf, which 

exhibits the relatively narrowest skull, which takes in only little more than the half of the skull 

length with a ratio of about 0.54.  As EMERSON & RADINSKY already pointed out in their 

studies, my results confirm a relatively narrow skull for Smilodon in contrast to the conical 

toothed modern cats.  For the cheetah with its shortened skull, the zygomatic arches make 

up more than 73% of the length, whereas the tiger, puma and lion range in between 69-71%. 

The jaguar and leopard reach about 67%.   

 

Canine Distance:  Figure 5.3.1 (bottom)  

This chart expresses the relations between the upper canine-distance to the width of the 

skull.  For Smilodon the clearance of the upper two canines makes up around 47% of the 

skull width, whereas for the wolf it is close to 36%.  For modern big cats relative canine 

distance more or less correlate with the proportions of the skull width and usually ranges in 
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between 38-41%. Only the cheetah is observed with a lower figure in this proportion of 

around 34%.   

Skull Proportions
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Skull-Width vs Canine Distance
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Figure 5.3.1:  length ratios between skull width (SW) and canine height (CH) against skull length (SL) 
in top figure.  The bottom figure illustrates the percentage of the canine distance (DC) to that of the 
skull width.   
 

Canine Shape:  Figure 5.3.2 (bottom)  

The chart illustrates the shape of the canine teeth, which were measured after the same 

principal as VAN VALKENBURGH AND RUFF (1986).  The antero-posterior (x) and the medio-
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lateral diameters are plotted against the canine height.  Only C. lupus and S. fatalis exhibit 

medio-lateral flattened canines, of which the antero-posterior breadth is more than twice as 

long as the medio-lateral breadth in the wolf (50,1%) and even higher in S. fatalis (51,2%).  

Canine Hight vs Canine Cross Section
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Figure 5.3.2:  proportions between the antero-posterior (x) and medio-lateral (y) extensions of the 
upper canines against canine height (top).  Bottom:  dental length against skull length, the latter is 
scaled to the same length (100%). 
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Therefore, saber-tooth cats are shown to be more similar in shape and strength 

characteristics of the canines to those of living canids than felids (see also VAN 

VALKENBURGH & RUFF, 1986).  Conical toothed cats, as their name suggests, have canines 

that are more round in shape, which was confirmed through my investigations.  Usually the 

antero-posterior diameters exceed the medio-lateral diameters of around 20-25% in all of the 

modern representative cat species.   

 

Relative Skull Length
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Figure 5.3.3:  Segment ratios between total skull length against overall anterior limb length.  Each 
species is shown with the skull length expressed as a percentage of the forelimb measurements.  
Note that the length of the jaguar’s skull makes up more than half of the forelimb, whereas it in 
Smilodon, with its extremely shortened anterior limbs, makes up only 44%.   
 

 

Dental Length:  Figure 5.3.2 (bottom)  

Apparently the wolf with its large array of teeth, possess the relatively longest dental bone 

compared to the skull length.  The lion has the relatively longest dental bone for all of the big 

cats with a percentage of around 69%.  The dental bone of the tiger and puma both make up 

ca. 67%, while the cheetah, leopard and jaguar fall slightly behind with about 65-66%.  The 

dental of S. fatalis is observed in having the lowest percentage of 64.5% of the total skull 

length.  

 

Skull Length to Anterior Limb Length:  Figure 5.3.3  

Comparisons between skull length and the overall anterior limb extent, is shown in Figure 

5.3.3.   It is striking that the skull length of the jaguar is comparatively long against its fore-
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limb measurement, whereas it in other species ranges between around 42% for the puma 

and 46% in the tiger and leopard.  In the cheetah however, the skull makes up only about 

33% of the anterior limb length.  Smilodon in turn was shown to possess the relatively 

shortest distal limb elements, but the skull still appears to be comparatively short when 

scaled against the front extremity (~44%). 

5.3 Statistical Analysis 

A primary objective of this study is to produce a database for future morphological 

comparisons between extinct and extant feline species. 

The numerous illustrations on length comparisons in the last chapter describe differences 

in proportions and morphology among the living big cats, the saber-toothed cat Smilodon and 

the wolf as the only member of the canids.  Knowing the ecological and behavioral 

background of extant representatives, the data sets and diagrams can be used to 

demonstrate correlations associated with habitat utilization and killing behavior.   The very 

distinct body proportions in Smilodon and X. hodsonae from their modern relatives clearly 

show a type that is much different from the generalized basic phenotype 15.  Hence, 

sabertooths must have utilized a modified hunting technique, which is certainly obvious by 

the sheer size of the upper canines.  The cheetah on the other hand also exhibits body 

proportions that are undoubtedly divergent from the basic phenotype, but in a much different 

way than that of Smilodon, namely in being more similar to those of the highly cursorial wolf.     

By means of bivariate plots and factorial- and discriminate statistical analysis, groups are 

characterized through the differences in morphology and body proportions for all specimens 

studied.   

For the following plots, log-values of the same data were calculated in the same order as 

for the first illustrations of Chapter 5.2, however, only for the long bones of the anterior and 

posterior limbs, which are directly related to cursoriality.  The specimens have to be roughly 

subdivided into three different categories before, which are based upon characteristic 

deviations from the general phenotype (see Chapter 6.2, p. 47).   

1. Basically, the first group (?) is characterized by elongated, slender distal limb elements, 

non-retractile claws, etc.  These are features, which are typical for fast running felines of low 

structured habitats.   

2. The second guild (? ) more or less equals the basic “felid phenotype,” which will be 

further explained in the following Chapter.  It is somewhat intermediate in its features 

between the first and third category.         

                                                 
15  See following chapter for explanation 
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3. The third guild at last (? ) possesses short and sturdy anterior limbs with powerful                                                                                    

muscles attaching and elongated canines in conjunction with an array of peculiarities in the 

skull anatomy 16.   
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Table 5.4.1:  Log/ log plots of various limb lengths for all three groups in the same order as 
in Chapter 5.2, respectively.    

 

                                                 
16 An exception forms Homotherium, which is somehow intermediate between pantherine- and smilodontine cats.  

Thus it is often clustered together with the former. 
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In Table 5.4.1 these tendencies are further illustrated for the anterior and posterior limb 

segments.  It is clearly visible that the values for species of category one (wolf & cheetah) fall 

below the regression line, whereas those of group three (Smilodon, X. hodsonae & Homothe- 

rium) fall above it.  Although Homotherium is intermediate in its features, particularly its 

elongated limbs show resemblance to pantherine felines and thus can be found within guild 

two.  Guild two includes all the pantherine cats plus F. concolor, which all assemble closer 

Table 5.4.2:  Log/ log plots of the same limb length ratios as in Table 5.4.1. Confidential intervals (red 
lines) are fitted to the data for the pantherine cats of guild two.  Every plot that falls out of this interval 
is distinguished clearly in proportion and function from guild two. 
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around the regression line.  The basic meaning of the observed pattern is, that the distal limb 

elements, in both posterior and anterior limb seem to grow faster than their proximal 

counterparts (femur and humerus) during physical maturity.  

For the total limb lengths (top right), which is collated between posterior and anterior 

extremities, growth rates switch within different limb segments in a similar fashion for all 

three guilds, thus they all gather closely around the regression line. 

 The wolf is characterized by higher values than for the cheetah, hence it is always placed 

relatively far away from the latter. 

1. Factorial Analysis 

A factorial analysis is applied to the data set in order to find out if groups of variables can 

be shown to be correlated to factors like cursoriality or strength.  Hence the factorial analysis 

reduces the data set and the factors determine the behavior of the all variables.  

Descriptive Statistics

3,2031 ,2640 8

2,8237 ,2707 8
2,7894 ,2701 8
1,8620 ,3305 8
1,4215 ,6007 8

,6273 ,4294 8
,2671 ,3767 8

3,2263 ,2368 8
2,1310 ,3549 8
1,8742 ,3370 8
1,4326 ,3472 8
1,3955 ,3592 8

3,0873 ,2241 8
1,0655 ,3533 8

,7637 ,3697 8
3,2782 ,2159 8

,3301 ,2637 8
1,4503 ,3001 8

-4,54E-02 ,2804 8
2,1582 ,1923 8
3,3314 ,2212 8
3,3252 ,2210 8
1,8463 ,2827 8
1,7402 ,2539 8

3,2199 ,1733 8
1,8296 ,2440 8
3,1389 ,1683 8
1,3744 ,2649 8
2,0424 ,2177 8
1,5916 ,3239 8

2,9801 ,3169 8
1,8742 ,3387 8
2,3097 ,1594 8

LNSL
LNDL
LNSW
LNCD
LNSCH

LNCX
LNCY
LNHGL
LNLI
LNHBD
LNHBT

LNTM
LNRGL
LNRBP
LNRQR
LNUGL
LNUBD

LNULO
LNUQR
LNMCGL
LNFGL
LNFGLC
LNFBP

LNFBD
LNTIGL
LNTILT
LNFIGL
LNASGL
LNCALGL

LNSCGLP
LNSCHS
LNSCTMAJ
LNMTGL

Mean
Value

Standard
Deviation

Analysis
N

       

Rotated Factor Matrix a

,971 ,152

,920 ,241
,901 ,404
,889 ,429
,877 ,308
,876 ,472
,875 ,356
,872 ,468
,866 ,213
,842 ,516

,819 ,469
,810 ,568
,807 ,581
,806 ,513
,796 ,476
,791 ,489
,777 ,545
,755 ,527
,720 ,655

,703 ,498
,694 ,595
,115 ,960
,337 ,935
,365 ,901
,386 ,882
,470 ,857
,291 ,847

,455 ,766
,655 ,739
,644 ,731
,659 ,726
,676 ,724
,696 ,701

LNCX
LNUBD
LNRQR
LNRBP
LNCY
LNHBT
LNSCGLP

LNLI
LNSCH
LNHBD
LNUQR
LNFBP
LNFBD
LNCD
LNASGL
LNSL

LNSCHS
LNULO
LNTM
LNDL
LNSW
LNMTGL
LNTIGL
LNFIGL
LNRGL

LNUGL
LNMCGL
LNSCTMAJ
LNHGL
LNFGL
LNFGLC
LNCALGL
LNTILT

1 2
Factors

Extraction Method: Principal Components Analysis.  
Rotation Method: Varimax with Kaiser-Normalization.

Rotation is converged in 3 Iterations.a. 
  

 

Table 5.4.3:  The standard deviation coefficients of the left chart range in between 1.6 - 6 % for the 
whole data set.  A high deviation is seen mainly in the canine teeth, which are strongly influenced 
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through the extremely elongated canines of the sabertooth Smilodon.  Low values are found primarily t 
in the long bones, which are related to cursoriality.   
Right side:  The first factors load high on skull measurements and the articular ends of the long bones 
as well as for the Teres major muscle and the astragalus.  They all are relatively well correlated.  The 
second factors in turn focus on the long bones of the anterior- and posterior extremities.  They are 
strongly correlated with the growth of the animal and cursoriality.  
 

Declared Total Variance

27,576 83,564 83,564 17,612 53,371 53,371
2,701 8,185 91,750 12,665 38,379 91,750
1,427 4,324 96,073

,853 2,586 98,659
,224 ,678 99,337
,134 ,405 99,742

8,514E-02 ,258 100,000
1,468E-15 4,450E-15 100,000
9,937E-16 3,011E-15 100,000
6,935E-16 2,102E-15 100,000

Factors
1
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Total % of Variance Cumulated % Total % of Variance Cumulated %

Initial Eigenvalue Rotated Sum of square loads

Extraction Method: Principal Components Analysis
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A factorial analyses was applied in order to test the extend to which the development of 

the variables between each other correlate, and if the variability can be traced back to only a 

few factors. 

Primarily two factors are to be expected for the correlation between the variables: growth 

after allometric conformities and speed.  The growth factor will likely explain the main part of 

the correlation between variables.  On the other hand, another expected factor would be 

adaptations within the limb skeleton relating to speed. 

At first, after the dispersion of the factor loadings, the factorial analyses only extracts one 

factor after the Kaiser-criteria, which can be attributed to allometric growth.  But because the 

Eigenvalue of the second factor was only slightly below the threshold of extraction in addition 

to the small number of investigated individuals, the extraction of two factors was given.  As 

 
Table 5.4.4:  The screeplot on the 
left side illustrates the ordered 
factors after the size of their 
Eigenvalues.  Each factor shows the 
corresponding size of the 
Eigenvalue. The first factors explain 
approximately 84% of the variables 
and have an Eigenvalue of about 27.  
Factor 2 explains about 8 % of the 
entire variables and its Eigenvalue is 
2,7 (See also Table above). 
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shown in the screeplot and  Table 5.4.4, the following factors do not contribute significantly to 

the explanation of the variability.   

The pattern of the factor loadings on the variability shows that the second factors correlate 

negatively with the prolongation of the distal limb segments.  This is particularly obvious, if 

the selection of the variables is minimized to the length of the limb bones (see Table 5.4.6).  

Thus the second factor can indeed be identified with the adaptation of the limb skeleton to 

strength versus cursoriality.  The dispersion of the factor loadings stays the same, even if 

more or even all variables are added in the analyses. 

The canine height is actually associated with adaptations to limb strength.  Surprisingly, 

this association is obtained when S. fatalis is excluded from the analyses and exclusively 

recent big cats are taken into account. 

Some measured parameters that correlate with the adaptation to strength: 

1.) long canines 

2.) short humerus 

3.) short femur 

4.) relatively broad joints, etc. 

The stable dispersion patterns of the factor loadings make one expect, that a profound 

characterization of the affected variables into three guilds is possible.  In order to prove this 

with the corresponding variables, that have high factor loadings on the second factor 

“strength”, a discriminant analyses was applied.  This method actually proved that a profound 

separation into three guilds is feasible.  A two-dimensional scatter plot of the factor values 

against each other clearly distinguishes these three guilds (see table 5.4.7).  While the 

cursorial cats can be found in the upper left corner of the diagram, Smilodon settles in the 

lower right corner.  The pantherine cats of the second guild all gather closer to the 

coordinates` origin.  In comparison to the individual regression analyses and the scatter plots 

of the individual variables against each other, the three guilds are more clearly separated in 

the scatter plot of the factor values. 

 

  

 Extraction Method: Principal Components Analysis. 
Rotation Method: Varimax with Kaiser-Normalization. 
Rotation converted in Iterations. 

Factors  
1 2 
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,857 
,825 
,583 
,657 
,448 
,820 
,563 
,582 
,350 

Table 5.4.6: 

Numbers in red frames underline the belongings to  
either Factors 1 or 2 of the various length measure- 
ments.  Skull length, humeral length and femoral 
length (Factor 2) have a strong correlation to another and 
relations  to strength advantages.  The distal limb elements  
in turn (Factor 1) show correlations to speed. 
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Extraction Method: Principal Components Analysis.  
Rotation Method: Varimax with Kaiser-Normalization.

Rotation is converged in 3 Iterations.a. 
 

Table 5.4.6:  Relations between characteristics that correspond to strength of the forelimbs.  The chart 
on the left side demonstrates the values for all the specimens except for Smilodon, which, with its 
elongated canines, clearly contributes to a greater deviation in the factorial analysis.  The table on the 
right side in turn includes Smilodon.    

2. Discriminant Analysis 

The discriminant function can be mentally subdivided into two different steps.  In the first 

step a discriminant function is to be guessed, the second step undertakes a classification of 

the cases and with it a subdivision in separate groups.  The peculiarity of the discriminant 

function results from the second step however, which serves to calculate, from the constant 

values of the declared variables, discrete values and together with that group membership of 

the dependant variables. 

High correlation coefficients in table 5.4.6 point towards a good correlation between the 

functional values and the values of the variables and the other way around for low or 

negative correlation coefficients.   

Canonical correlation coefficients measure the severity of coherence between functional 

values of the discriminant function and groups of dependant variables.  The latter also 

amounts the portion of the dispersion between groups of the entire dispersion.  The values of 

coefficients range in between 0 and 1.  The bigger the value, the higher the dispersion 

between groups in proportion to the dispersion within the groups.  This way a high canonical 

correlation coefficient points towards a good separation between the groups and hence 

towards a high content of declaration of the model.   

A dispersion diagram (Figure 5.4.7) illustrates group membership for each data values.  

The pantherine cats (green) are relatively close together and far apart from guild one (red) 
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and three (blue).  Guild two has low values for the first and second discriminant functions, 

where- as group one loads high on the second discriminant function and low on the first.  For 

guild three the opposite is true.  It is these different stresses of the values that separate the 

groups clearly apart from each other. 
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Figure 5.4.7:  Dispersion diagram illustrating a clear separation between the three principal guilds. 

 
Table 5.4.6:  Common correlations 
within groups between discriminant 
variables and standardized canonical 
discriminant functions.  Variables are 
ordered after their absolute size of 
correlation within the function. 
 
* Highest absolute correlation 
between each variable and one 
discriminant function. 
a   This variable is not used in the 
analysis.  
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6 DISCUSSION 

6.1 Habitat Preferences 

The behavior of any kind of mammal is in many aspects greatly influenced by the 

structure of its three-dimensional habitat (EISENBERG AND LOCKHART, 1972; GEIST, 1974).  

Several of the living large cats are found in high-structured habitats 17 almost exclusively.  

These species include the jaguar (Panthera onca) of the New World, which has a natural 

distribution that extends from South Argentina to the southern states of the US.  In its 

northern most extensions however, the jaguar is forced to enter scrub country and even 

deserts (NOWAK, 1991).  Nevertheless, it generally seems to require the presence of much 

fresh water, which is plenty available in tropical, dense forest habitats.  The jaguar is an 

excellent swimmer and a good climber. 

The tiger (Panthera tigris) in contrast, is known to be tolerant of a wide range of 

environmental conditions, its only requirements being sufficient cover, water, and prey.  It is 

found in high-structured tropical rainforests, evergreen forests, mangrove swamps, but also 

in low structured grasslands, Savannah’s, and even in rocky countrysides.  As the jaguar, the 

tiger is a very good swimmer and likes the vicinity of water (NOWAK, 1991).   

The leopard (P. pardus) has the largest known geographical distribution of any felid 

species, which inevitably implies a highly variable habitat tolerance.  It can adapt to almost 

any habitat that provides it sufficient food and cover and its diet appears to be more varied 

than that of any other large felid (SUNQUIST, 1985).  P. pardus inhabits the ecotone between 

forest and steppe, but has also been recorded in deserts and at elevations of more than 

5,600 meters on Mount Kilimanjaro (NOWAK, 1991).   

 The American mountain lion (F. concolor) in turn holds the greatest natural distribution of 

any mammal in the Western Hemisphere except Homo sapiens (NOWAK, 1991).  Although 

the cougar seems to prefer high relief, it is known to live in grassland communities such as 

the Midwest prairies of the United States, and the lowland tropical forests of Central and 

South America (GONYEA, 1976).  The elevational range extends from sea level to 4,500 

meters in Ecuador (NOWAK , 1991).  In general, F. concolor is adaptable in any area with 

adequate cover and prey. 

More dependent on a high relief is the snow leopard (U. uncia), which is found in the high 

Himalayan Mountains of Central Asia.  In summer it occurs commonly at elevations of 2,700-

6,000 meters.  During winter it may follow its prey down into forests below 1,800 meters 

(NOWAK, 1991).  The usual habitat of the snow leopard is the open woodlands on mountain 

                                                 
17 Dense forest 
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slopes, which provides only little cover to conceal the predator’s movements (GONYEA, 

1976). 

The lion (P. leo) prefers low-structured habitats of grassy plains, open woodlands, and 

scrub country, although it sometimes enters semi-deserts and forests and it has even been 

recorded at elevations of up to 5,000 meters (NOWAK, 1991).   

The cheetah (A. jubatus), exclusively occupies low-structured habitats such as semi-

deserts, open grasslands and dense bush vegetation.  It originally occurred from Palestine 

and the Arabian Peninsula to Tadzhik and central India, as well as throughout Africa, except 

in the tropical forest zone and the central Sahara (NOWAK, 1991). 

In general, species of large living felids are found that preferably exploit either high- or 

low- structured habitats, while others show a greater diversity in their habitat choice 

(GONYEA, 1976).  It should be noted however, that habitat choice of any cat species is 

strongly influenced from the composition of the carnivore guild (TURNER & ANTÓN, 1996).  In 

a modern intact ecosystem such as the Kruger National Park of South Africa for instance, the 

coexistence of several species of large predators18 coexist there to varying degrees and with 

somewhat overlapping diets, but direct competition and its effects are minimized because the 

animals tend to use distinctive habitats and hunt during different times of the day (PIENAAR, 

1969). 

Smilodon fatalis clearly shows the proportions of a typical forest felid and presumably 

favored high-structured habitats if living a solitary life (BABIARZ et al., 1999).  However, if it 

was hunting in packs, which can be assumed from the large number of specimen found at 

Rancho la Brea, together with the evidence of healed injuries that would enable sick or 

injured animals to survive strenuous times, it might as well have favored a more open terrain 

comparable to that of modern lions.  Beyond that, climatic conditions were suggested to be 

very much similar in type from those existing today in the Southwest of the United States, 

namely a semi-arid scrub country (STOCK, 1972).  This should be evidence enough to prove 

that Smilodon actually did not prefer high structured habitats, but rather low structured areas 

like they still exist today in the Sonora desert.  

In fact GONYEA (1976) suggested that lions, although having the body proportions of forest 

felids, also reside in low structured habitats, because the utilization of large prey limits the 

possibilities for morphological adaptations for speed.  To balance this lack of speed, increase 

hunting efficiency, reproductive success, and territorial defense on the plains, lions form 

prides.  Smilodon was probably facing similar problems during its time of existence.  It might 

have solved these troubles in the formation of comparable arranged prides, especially in 

view of the fact that contemporary co-predators such as Panthera atrox or the hyena-like dire 

wolf Canis dirus, were fierce competitors that may have tried to take over a kill, which they 

                                                 
18 lion, spotted hyena, leopard, cheetah and wild dog 
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presumably could have if Smilodon happened to lead a solitary life.  Furthermore, based on 

the sheer number of individuals recovered at Rancho la Brea, it seems likely that the felines 

became trapped in attempts to reach already mired herbivores or their carcasses  (AKERSTEN, 

1985).  If the number of large herbivores entrapped in the tar pits represents an 

approximation to the maximum number of trapping incidents, then several individuals of 

Smilodon were also caught during their efforts to grab each of those herbivores.  TURNER & 

ANTÓN (1996) point out that it would be very unlikely that every Smilodon, trying to reach a 

trapped animal, suffered the same destiny; the entangled number of animals in the vicinity at 

any one time is too high to support an argument for a solitary lifestyle, considering that such 

a lifestyle would imply individual territories which in turn would reduce the number of animals 

able to amass in the area. 

Nevertheless, cats in general are not animals of totally open country19, which is rather true 

for the highly cursorial canids that have filled this adaptive zone, nor are they generally 

arboreal as are many of the mustelids and viverrids.  MARTIN (1980) suggests that cats 

combine some of both, areas where trees and open areas mix may be the real adaptive 

zones of the felines.  Depending on body proportions, morphological characters, favored 

prey size and abundance of co-predators as noted above, some might tend to be more 

appealed by low structured habitats rather than high structured habitats.  Thus it seems 

rather problematic to strictly separate habitat preferences in different cat species, by only 

studying their limb proportions as suggested by GONYEA (1976).  The exceptions are seen in 

the cheetah and in those felines that live in prides. 

 

 

 

6.2 Discussion 

In order to understand the differences and anatomical variances expressed in the results 

of the species examined one has to be familiar with their individual behavioral and ecological 

characteristics by virtue of phylogenetic inheritance (MARTIN, 1989).  Therefore it is 

substantial to examine some of these social and behavioral factors that go together and 

which in turn are greatly influenced by the structure of the habitat as elucidated in Chapter 

5.1. 

Generally, cats are said to be cursorial animals.  They are sprinters and capable of very 

rapid acceleration, that can maintain high speeds for only short distances (TAYLOR, 1989).  

                                                 
19 except for the cheetah 
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Most cats, living and extinct, therefore evolved elongated and relatively slender long bones in 

addition to elongated foot bones in contrast with some other animals of comparable body 

size (e.g. bears).  

The basic felid “phenotype set” 20 is large, carnivorous, and typically captures terrestrial 

prey at least half its own body weight (GITTLEMAN, 1985; PACKER, 1986).  It forages over a 

large area and often exists at low densities (GITTLEMAN & HARVEY, 1982; ROBINSON & 

REDFORD, 1986).  Females reproduce every two to three years and young spend a year to 

one and a half dependant on their mother while perfecting their hunting skills (GITTLEMAN, 

1986).  Prey are typically captured from ambush and/ or stalk and short rush or chase by 

means of the claw equipped forelimbs and are dispatched with a swift killing bite delivered by 

the large conical-like canines (EWER, 1973, LEYHAUSEN, 1979).  Only the cheetah 21 and the 

sabertooths 22 differ radically from this generalized body plan and technique of prey capture.  

Cheetahs are specialized for high-speed pursuit of smaller prey and consequently exhibit a 

variety of morphological specializations often comparable to the wolf, while Smilodon is the 

less fleet footed feline, which probably stalked its usually large prey like thick-skinned 

proboscideans or other slow moving mammals.  Its massive anterior limbs possessed 

retractile claws and aided in seizing and immobilizing prey.  The elongated sabers were 

exclusively used for killing prey with a canine shear bite applied to the soft parts (see 

Chapter 1). 

With the exceptions of the lion and probably Smilodon, all the large felids are typically 

solitary hunters and feeders, although all large cats are sometimes known to form smaller 

groups during particular times. 

 

Since felid morphology is the result of the compromise between the potential to catch prey 

and to kill it, all cats, with the exception of the cheetah, use retractable claws to make 

primary contact and to pull down prey (LEYHAUSEN, 1965B), see Figure 6.2.1. 

Hence, the cat foot cannot be perfectly digitigrade, but is on the other hand capable of a 

more or less restricted supine- prone movement in the distal anterior limb element.  The 

cheetah has elongated dog-like ungual sheaths on digits II-V that extend well beyond the fur 

and give the appearance that the claws are not retractile (GONYEA, 1975).  It is for this 

reason why A. jubatus knocks over its prey (Figure 7.3), while canids  (Figure 6.2.2) depend 

on their teeth for biting prey and bringing it down (ZIEMEN, 1981).  As a result both their feet 

do not perform the same dual function as those of the pantherine felids (TAYLOR, 1989) 23.   

                                                 
20 comparable to number 2 of the three proposed cat categories. 
21 comparable to category number 1 as the wolf. 
22 See category number 3. 
23 See chapter 5.2 
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It is these behavioral variations that are also displayed in the body shape of the different cat 

species, which in turn is best reflected in skeletal proportions.   

 

Humerus, Ulna, Radius & Metacarpalia: 

The cheetah is evolved for speed over short distances, through which it is aided by its overall 

flexibility, its lean body, and long limbs that enables it to increase its stride length by flexing 

its back so that during maximum speed it covers about ten meters with a single leap 

(HILDEBRAND, 1959).  Thereby its long tail plays an important role of maintaining balance 

Figure 6.2.1 (right):  Articulated 4th phalanx of 
the forefoot of P. tigris (after .  ???, 19..). 
 
(bottom):  Anatomy of the claw retractile 
mechanism for Felis catus  showing muscles 
and tendons.  Medial view, partially protruted.   
 
Abbreviations:  DIP = distal interphalangeal 
joint; EE = extensor expansion; ET = extensor 
tendon; FDP = flexor digitorum profundus 
tendon;  MDL = medial dorsal elastic ligament; 
MIP = middle interphalangeal joint (after 
GONYEA & ASHWORTH, 1975).   
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Figure 6.2.2:  Killing bite of the wolf on medium sized prey (after ZIEMEN, 1981). 

 

during the high-speed twists and turns of a typical chase.  Therefore A. jubatus is strongly 

dependent on an open and flat terrain.  In this regard, it is not surprising that the cheetah had 

the relatively longest extremities of all the large felids for the anterior limb ratios in the radius 

and ulna segments, but also the humerus was proven to be longer than in average as for 

many other taxa.  TURNER & ANTÓN (1996) noted that the humerus is about ten times the 

average length of the thoracic vertebrae 3 to 8 in most pantherine cats, but in the cheetah 

the humerus is more than thirteen times that figure.  The extremities of the lion in turn, which 

broadly occupies the same kind of habitat 24, exhibits only few changes in body proportions 

when compared to pantherine cats or “forest felids” such as the tiger.  Although it was shown 

that the radius and the ulna in the lion were somewhat in between those of the cheetah and 

those of the rest of the examined modern species.  However, GONYEA (1976) arguments, 

that the utilization of large prey limits the possibilities for morphological adaptations for 

speed.  As noted in chapter 4.1, the formation of prides make up for this lack of speed, 

increase hunting efficiency, etc.  The elongation of the radius and ulna may however reflect 

the first step towards an adaptation for a more cursorial life in low structured habitats.   

                                                 
24 See chapter 4.1 
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S. fatalis is expected to show the shortest anterior limb elements, which was verified 

through the results.  It has the relatively shortest distal limb elements of all the felids:  ulna, 

radius, and 3rd metacarpal.  For S. populator, the relative radial length was even lower than 

that of S. fatalis with a ratio of only 0.73 (TURNER & ANTÓN, 1996). 

Ratios of humero-ulna lengths in H. ischyros indicate, that with about 1.10, it had almost 

cheetah-like proportions in its anterior limbs, whereas its relative H. serum comes closer to 

the lion with 1.05.  They both also exhibit a high scapula and a long neck.  Together with 

short tibias (Figure 5.2.1) the animals must have shared a certain similarity to the 

appearance of a hyena (see Figure 6.2.2). TURNER & ANTÓN (1996) also point to the 

elongated radius, which was typically 91% of the length of the humerus, and a shortened 

calcaneum.  It seems that such limb proportions would imply a selective advantage, although 

in general, these proportions are associated with a reduced ability to grasp and to jump.  It 

has even been suggested that Homotherium falls into an intermediate position between 

pantherine cats and hyenas.  If correct, and Homotherium’s  lifestyle was more similar to 

those of hyenas then they might as well have been able to sustain a chase for long 

distances.  RAWN-SCHATZINGER (1992) elaborated this idea and pointed out that H. serum 

from Friesenhahn cave in Texas in conjunction possessed reduced claw retraction, features 

that in her view suggest a sprinting ability.   

X. hodsonae, the newly introduced saber-toothed cat described by BABIARZ et al., 1999 

combines scimitar-tooth canines with the short, massive extremities of a dirk-toothed cat like 

Smilodon, and hence presents a third way to set up a saber-toothed group of carnivores25.  

Because the data was obtained directly from the recent publication of BABIARZ et al. (1999) 

only few a relative length comparisons were made.  There are comparisons between the 

humerus against the ulna, and between the femur and tibia.  In spite of the scarce data 

available, they do indicate that X. hodsonae indeed is similar in habitus and proportions to S. 

fatalis.  The tibia is shown to be almost as short in relation to the femur, while the ulna is 

extremely shorter than in Smilodon (compare Figure 5.2.1 & 5.2.3).  Length variations for the 

ulna in pantherine cats and Smilodon were calculated to be 18% longer than the radius, 

leading to the estimate, that the radius of X. hodsonae must have been similar in proportions 

with a ratio of approximately 0.71 in contrast to S. fatalis’ 0.79.  However, BABIARZ et al. 

(1999) further pointed out that the postcranial skeleton is in fact as short and massive as in 

Smilodon, but resembles Homotherium crenatidens in detail.  

Elongation of the distal limb elements is an indicator of cursorial specialization (HOWELL, 

1944).  This increase of the effective limb length is a characteristic for the cat family and is 

known as a digitigrate stance, which enables the animal to stand and move on its toes. 

                                                 
25 Compare Chapter 3. 
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In general, a shortening or elongation of the limbs primarily occurs in the distal segments 

of the limb, whereas the humerus and the femur change their length only to minimal 

amounts. 

 

FIGURE 6.2.3:   Homotherium  and the spotted hyena (Crocuta crocuta).  The slope-backed appearance 
of the hyena is seen to be paralleled in the cat. 
 

 

Since the distal segments are considerably elongated in the cheetah and eminently 

shortened in Smilodon it is no coincidence that their corresponding proximal limb bones are 

relatively shorter for the cheetah and wolf and relatively longer in Smilodon.  An elongation of 

the distal limb segments provides a longer leverage and enables a higher speed. 

A short radius and short metacarpals provide better grasping strength than for those felids 

with longer proportions of these bone segments.  Particularly for Smilodon and pantherine 

cats it is shown that strength is more important than speed in contrast to the cheetah or the 

canids.  GONYEA (1976) showed that the relative lengths of the distal limb elements of the 

anterior limb differ significantly among the large felids.  He also compared the relative lengths 

of the 3rd metacarpus against the radius and found the metacarpus surprisingly shorter in the 

cheetah than that of all the other large living felids.  This in turn doesn’t match with the latter 

idea, but in consideration of the cheetah’s extremely prolonged radius it seems to be 

acceptable (compare Figure 5.2.1).  Nevertheless, the ratios of the present study prove the 

opposite, namely that the metacarpal bones, exhibited in the cheetah and puma, are 

minimally longer, indicating a tendency towards a cursorial specialization and faster running.  

This proves to be true at least for the cheetah and points towards a closer relationship to the 
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puma (see page 59).  In contrast, the jaguar possesses the shortest metacarpal bones of the 

living cats, but in general no major difference was to be observed between the pantherine 

“forest felids”.  

   

Femur, Tibia, Metatarsalia & Calcaneus: 

The hind limb segment ratios in cats may also reflect the animal’s habitat preference and 

its implicated killing behavior.  It is for this reason why it was found to be of great importance 

for this study in order to further elucidate GONYEA’S introduced model of habitat choice and 

body proportions.  As can be expected, the posterior limb ratios between the femur and tibia 

are quite similar to the ratios of the humerus and radius of the front extremities in all of the 

studied cats.  In this regard, pantherine cats that preferably inhabit dense forests have the 

relatively shortest posterior limb segments and felids that tend to inhabit a more open terrain 

have the relatively longest hind limb bones.  The cheetah therefore exhibits the relatively 

highest ratio followed by the leopard, the puma, the jaguar, and the lion and tiger.  On the 

opposite, the two fossil genders of Homotherium have even smaller ratios, and X. hodsonae 

and S. fatalis show tendencies of extreme shortening of the tibia bone against the femur.  

The ratio of the femur to metatarsal length has often been used as an indicator of speed 

and cursoriality among mammals (GREGORY, 1912; OSBORN, 1929; HOWELL, 1944; BAKKER, 

1983).  Elongation and tapering of distal limb elements relative to the proximal section is 

thought to promote speed because limb length  (and stride length) is increased without an 

unfavorable shift of the limb’s moment of inertia, because muscle mass remains 

concentrated near the proximal joint (HILDEBRAND & HURLEY, 1985).  Within the present 

specimens, there is a rough correspondence between speed and hind limb proportions.  

They again broadly resemble those of the front limb as expected, with the cheetah having the 

longest tibia and 3rd metatarsal bones and Smilodon having the shortest, whereas those of 

the other cats closely range together in between the latter two. 

Moreover, relatively long posterior limbs have been found to be an indicator of good 

jumping skills, when compared to the length of the anterior limbs (HOWELL, 1944).  Another 

important indicator for the leaping ability is said to be the length of the calcaneus (TURNER, 

1996).  Nevertheless, its relative length, compared with that of the tibia, shows some 

contradictions with the former model of HOWELL, 1944 26.    

The puma is agile and known to possess a great jumping power.  It may leap from the 

ground to a height of up to 5.5 meters in a tree (NOWAK, 1991).  Therefore its hind limbs 

should be relatively long compared to the front limbs and vice versa.  This in deed was 

verified through the outcome, where F. concolor was shown to have the shortest anterior 

                                                 
26 See Figure 5.2.4 (bottom) 
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limbs and hence the longest posterior extremities (see Figure 5.2.3).  The relatively short 

calcaneum in the puma doesn’t seem to weaken its potential to leap.  The tiger has been 

reported to cover 10 meters in a horizontal leap, the lion in turn 12 meters, and the leopard 

can jump over 6 meters horizontally and 3 meters vertically (NOWAK, 1991).  No information 

was found for the jaguar and the cheetah.  Of course, these numbers are also strongly 

dependant on the weight of individual species and many other factors and do not necessarily 

reflect the maximum jumping distance each would be capable of to cover.  However, 

together with the hind- front limb ratios and the calcaneum length, it does provide a basic 

fundament for a categorization in good and less good jumpers.  The tiger is a good jumper 

compared to the leopard, but both have similar proportions of the front limb ratios that are 

however, still notably longer than in the puma.  However, P. tigris was shown to have a 

proportionately longer calcaneum than P. pardus giving it a better leverage at the ankle joint.  

The cheetah in comparison has similar ratios, but telling by the even shorter calcaneum (see 

Figure 5.2.4) it is presumably not able to cover such a large distance with a single leap as 

the other species.  The jaguar and especially the lion exhibit rather long anterior limbs, but 

the long calcaneum in the lion seems to make up for this “disadvantage”, whereas the 

calcaneum in the jaguar is only of average, indicating a weaker ability to jump and leap 

comparable to the leopard.  In S. fatalis the elongated calcaneum seems to compensate for 

the long front extremity 27 as is likewise demonstrated in the lion, and in spite of its heaviness 

it must have had good jumping skills.        

 

Astragalus: 

Studies of ankle morphology among cursorial mammals have suggested that the 

functional consequence of a more grooved astragalus is a restriction of medial-lateral 

mobility at the tibia-astragalar joint (cf. OSBORN, 1929; GINSBURG, 1961; BAKKER, 1983; VAN 

VALKENBURGH, 1987).  Cursorial mammals move their limbs primarily in a back and forth, 

rather than medial-lateral direction, meaning that the flexion and extension ability is favored 

over that of plantar eversion or inversion.  Therefore, to advance joint stability while running, 

cursors have evolved a tighter interlocking of joint surfaces at almost every limb articulation 

(HOWELL, 1944; HILDEBRAND, 1974; BAKKER, 1983).  This suggests that, within this sample, 

the higher cursorial species of group one should have the most deeply grooved trochlea.  

However, VAN VALKENBURGH (1987) concluded that the astragalar trochlea depth by itself 

says little about the locomotor abilities of a particular species.  It rather reflects heritage than 

habitus.  The felids are examined in having a relatively small range values. 

 

                                                 
27 or the relatively short posterior limb 
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Olecranon: 

The olecranon on the proximal head of the ulna serves as the insertion area of the triceps 

muscles and hence its size is an indication for different velocity advantages at the distal 

epipodium (POUGH, HEISER, MCFARLAND, 1996).  The triceps muscles arise from the 

humerus and scapula.  Its most obvious action is to extend the forearm in the swing phase of 

the step cycle, but when the hand is maintained in fixed position on the ground during the 

stance phase, extension of the lower arm by the triceps helps push the body forward 

(WALKER, 1987).  In general, the triceps is responsible for any pushing action away from the 

body.  Faster and higher cursorial animals as the cheetah, H. serum , and wolf are shown to 

have a short olecranon with a smaller triceps attachment surface, while the sabertooths, are 

expected to exhibit the longest olecrani.  Correspondingly, cats of group two must possess 

intermediate olecranon lengths.  However, for group two and three there seems to be no 

notable differences for the length measurements, although the saber-toothed cats with their 

short and sturdy anterior limbs are expected to have more massive triceps muscles, that 

helped the animal to seize its prey thoroughly before the “delicate” canines were applied on 

the right spot to kill the victim.  The puma, jaguar, and lion were shown to exceed the ratios 

of the sabers like S. fatalis and X. hodsonae, leading to the assumption that the olecranon 

length and thus the triceps insertion area is not necessarily stronger developed than in 

modern big cats.  However, GONYEA (1978) showed that for category one the lateral 

tuberosity on the olecranon process was usually smaller than the medial tuberosity.   

Therefor, the medial head of the triceps muscle was relatively large for these species when 

compared with those of category two.  Accordingly, the lateral tuberosities are larger than the 

medial tuberosities for category two, and the lateral head of the triceps is notably larger than 

that of group one.  The exception forms P. leo, which has olecranon tuberosities of similar 

size.  In S. fatalis the lateral tuberosities are comparatively larger than in modern pantherine 

cats indicating stronger muscle attachments, although the relative olecranon length retains 

rather small.  

 

Caput Radii: 

The shape of the proximal head of the radius (Caput radii) is found to be of great 

importance in terms of rotation of the radius around the ulna.  The articular surface of the 

radial head moves on the capitulum and trochlea of the humerus, and its form is related to 

the shape of these surfaces (TAYLOR, 1974) as well as to the formation of the radio-ulnar 

joint. Figures 5.2.5 and 5.2.7 both illustrate the relative shape of the radial head and the 

cross-sectional areas of the radial notch and its orientation of the ulnae in various species.  

The prone and supine movements are possible through the articulation with the radial notch 

of the ulna, which forms part of the elbow joint.  In the Felidae, the head of the radius has an 
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elliptical outline, which allows it to act as a cam that transmits an aberrant motion to the 

radius during movements of pronation and supination (GONYEA, 1978).  The eccentric motion 

of the rotating head has the effect of permitting rotation of the radius without stretching the 

interosseous ligament, which holds the radius and ulna together.  Since the degree of 

forearm pronation-supination seem to depend on the shape of the radial head and the 

position of the radial notch, inferences for increasing or decreasing mobility in this section 

should be possible.  In all probability, it is particularly Smilodon, from which is assumed to 

depend on a more flexible pronation- supination mechanism rather than concical toothed 

cats 28.  Because of that, the possession of a more circular-like shape in this section is 

supposed.  The cheetah and wolf are both highly cursorial runners and do not seem to need 

a marked mobility in the forearm.  Therefore, the species of group one should perform a 

radial head that is less elliptical in outline than those of group two and three.  In addition, the 

orientation of the radial notch of the ulna should be placed more anteriorly for group one 

making a pronation of the forearm easier, but restrict supine movements.  The results 

partially support this idea for the three groups, but exceptions for the radial shape form the 

cheetah, with an outline being slightly rounder than for the tiger and jaguar.  Canis in turn 

was shown to have the lowest elliptical shape, while S. fatalis showed the highest.  For the 

orientation of the radial notch the results confirm the postulated expectations.   

 

Radial Notch: 

GONYEA (1978) discovered that the orientation of the radial notch (proximal radio-ulnar 

joint) of the ulna was positioned laterally in all extant big cats, which have a relatively high 

degree of pronation-supination of the anterior limb.  For those carnivores, which have the 

radial notch located more anteriorly like the canids, pronation of the forelimb would be made 

easier and supination would be restricted.  The cross-sections in Figure 5.2.7 illustrate that 

basic pattern and also show that the angle for Smilodon surpasses those of the other species 

of approximately 15?.  This further supports the interpretation that elbow movements in this 

saber-toothed cat allowed a greater flexibility than in modern pantherine felines. 

 

Olecranon Fossa: 

The sharp bony edges of the olecranon fossa help guide movements of the ulna on the 

trochlea of the humerus.  JENKINS (1971) proved that the olecranon fossa possesses a 

greater angle of inclination in the felids than in canids.  He argues that in non-cursorial 

mammals, the humerus is normally held at an angle to the sagittal plane of the body thereby 

requiring the elbow to flex and extend, while the long axis of the ulna is at an angle to the 

                                                 
28  Compare to Chapter 7 
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long axis of the humerus.  However, a ‘pendulum-like’ flexion and extension during 

locomotion would result in there being no angle between the long axis of the humerus and 

ulna.  This in turn would be reflected in the olecranon fossa having a vertical orientation; 

hence, the greater the deviation of the front extremity from a ‘pendulum-like’ motion, the 

greater the angle of the olecranon fossa in relation to the long axis of the humerus. With this 

in mind, GONYEA (1978) tried to correlate this morphological character with that of habitat 

preferences and concluded that the ‘exclusive’ forest dwellers have a greater olecranon 

angle and therefore a greater deviation of the anterior limb from a ‘pendulum-like’ movement 

than those felids that inhabit a more open country.  Results of the present study confirm with 

his ideas and demonstrate that the inclination of the olecranon fossa in Smilodon is relatively 

high to modern pantherine cats. 

 

Humerus, Distal: 

Two articular joints on the distal end of the humerus are represented by the cylindrical 

trochlea, which links with the ulna, and the capitulum, which articulates with the radius.  

TAYLOR (1974) demonstrated that the shape of these two described segments limits 

movements in the antero-posterior plane between the humerus, radius, and ulna.  Thus it is 

assumed that for group one the adaptive trend is toward restriction of elbow movement to 

flexion and extension in a sagittal plane providing additional elbow stability, while for cats of 

group two and three these trends should lead towards the other direction.  Therefore, it is 

presumed that the trochlea would exhibit a greater relative breadth in higher cursorial 

carnivores, when collated to the maximum width of the distal humerus.  However, results 

vary arbitrarily and do not confirm with any of the postulated ideas (see Figure 5.2.6).  More 

relevant in this case seems to be the height of the trochlea rather than the width.     

 

Tibia, Proximal: 

Collations between the proximal sections of the tibial head against the tibial length should 

for one part demonstrate how limb bones primarily grow along the axis of the shaft in higher 

cursorial carnivores and that the proximal and distal ends are more or less neglected in this 

regard.  To put it in other words, the diaphysis is expected to grow in length while the 

epiphysis more or less should stay at the same size.  Secondly, cats of group two and three 

are believed to have bigger and stronger articular joints than runners like the wolf and 

cheetah.  In fact, the results in Figure 5.2.8 indicate and further elaborate this interpretation.  

Group one is shown in having the smallest epiphysis, while group two is intermediate 

between the latter and group three, as expected.   
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Femur, Proximal: 

The femur is the strongest bone in the mammalian skeleton, because of both, the 

supporting function and propulsion of the body.  In respect of corresponding muscle 

performances for forward movements of the body and as an effect through the load applied 

onto this limb bone, the latter exhibits different stresses in terms of length, breadth, 

processes, etc.  At the proximal end of the femur the Caput femoris forms the articular joint to 

the acetabulum of the pelvis.  It is turned inwards and more or less perpendicular to the long 

axis of the shaft.  Lateral to this joint lies the Trochanter major.  This portion is usually 

situated below the articulating joint in cats, whereas in dogs it may reach equal height 

(NICKEL ,SCHUMMER, SEIFERLE, 1977). 

Relations and comparisons between both, the proximal and distal heads of the femoral 

bone, as illustrated in Figure 5.2.8 on the bottom, should demonstrate length variances 

between these two segments.  In much the same way as the trochlear ridge of the humeral 

elbow joint was thought to depend in size on the type of locomotion, the same principals are 

expected for the femoral knee joint.  In this case however, it’s the medial and lateral 

epicondyles of the distal head that make up all the breadth.  These epicondyles are insertion 

areas for muscles like the strong adductor magnus muscle on the medial- or the popliteus 

muscle on the lateral epicondyles.  The former operates in unison with various other muscles 

moving the limb in an inward- and backward motion, while the latter is responsible for the 

flexion of the knee joint and for pronation of the shank (NICKEL ,SCHUMMER, SEIFERLE, 1977).  

The proximal head of the femur however, seems to be strongly dependent on the strength of 

the gluteus medius- and minimus attaching on the greater trochanter of the proximal end of 

the femur.  These two muscles are responsible for abductions of the thigh at the hip joint.  M. 

gluteus medius is furthermore involved in a backwards movement of the entire limb providing 

a forward propulsion of the trunk (NICKEL ,SCHUMMER, SEIFERLE, 1977).  Moreover, a longer 

femoral neck, which is supposed to be shorter in runners of group one but longer in group 

two and three, obviously contributes to the overall width of the proximal head.  Also, because 

the muscles attaching to the distal femoral portion are involved in propulsion of the body, 

pantherine cats are expected to have a somewhat larger greater trochanter, whereas for the 

muscles that insert on the distal segment seem to be more engaged for cursors of group 

one.  Nevertheless, the results show that there seems to be no correlation whatsoever and a 

closer examination of muscles insertion areas would be more beneficial in this case.    

In Figure 2.5.9 the proportions of the glenoid process and the muscle attachment size for 

the Teres major muscle were compared and scaled against the length of the scapula.  The 

Teres major muscle inserts along the lateral axial border of the infraspinous fossa.  Together 

with the M. subscapularis and Latissimus dorsi it rotates the humerus medially whereas 

alone, it acts as an adductor of the anterior limb.  The lever arm of this muscle increases with 
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the extension of the posterior angle of the scapula where the muscle attaches (HARVEY 

POUGH et al.,1996).  This feature indeed is developed in the shoulder blades of group one 

and in the puma of category two, whereas the other cats have a more symmetrical scapula.  

It is for this reason why these muscles are expected to be stronger developed in the wolf and 

cheetah, and maybe in the puma as well, which is shown to be closer related to the latter 

(see below).  The felids of group two and three in turn are thought to show relatively short 

muscles in this regard.  The outcome of the data does confirm with these ideas for most 

species, except for the wolf and lion.  However, the lion already showed affinities towards a 

more cursorial open terrain lifestyle, whereas the wolf, with a relative Teres major length that 

is almost as short as in Smilodon, may not rely heavily on such a well-developed muscle 

portion as in the cats or it simply uses different muscles for this action like the subscapularis 

muscle.   

 

Scapula: 

The scapula serves not only as an insertion area for all of the major muscles of the 

shoulder joint, it also plays an important role in contributing to the overall length of the 

anterior limb.  If the scapula is aligned with and in the same plane as the other limb elements 

its rotation contributes to the length of stride (POUGH et al, 1996).  For instance, if we take a 

look at the sloping back of modern hyenas or in the fossil scimitar-toothed cat Homotherium, 

a high scapula plus elongated forelimbs primarily lead to this distinctive posture.  The 

scapula articulates with the Caput humeri of the humerus and allows rotation to varying 

degrees in different mammal species depending on an increasing specialization of the 

anterior limb towards a pure running mechanism.   

The relative size of the glenoid process is strongly correlated to the Caput humeri, which 

allows rotation to different amounts in various cats also depending on specialization towards 

a strict running locomotion as in group one.  Hence, the smaller, rounder and flatter the 

glenoid process the more mobile is the shoulder joint in a variety of planes and vice versa.  In 

this regard, it is expected that pantherine cats of group two and particularly saber-toothed 

cats show great tendencies towards such developments, whereas carnivores of group one 

are thought to reduce features in this respect.  Again, the data prove this for all to be similar 

except for the wolf, which has an extremely large glenoid process in comparison to the 

scapula length.   

 

 

Teres Major: 

The Teres major muscle is involved in the flexion of the shoulder joint and to a slight 

degree on the adduction of the front limb.  In cats, the attachment area on the humerus is 
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tendinous.  Thus the approximate insertion area away from the joint could be estimated to a 

fairly profound degree.  Inferences of muscle positions particularly in the shoulder and upper 

forelimb of carnivores with tendinous or aponeurotic attachments, is said to be generally 

associated with scarring or delimited osteological features, whereas direct attachments 

typically occur on smooth bone surfaces that are often not visible (HAROLD et al., 1990).  

HILDEBRAND (1985) showed that muscles could move the joints through wider angles and 

therefore contribute to the length of stride when they insert close to the joints than when they 

insert farther away.   

For most felids the ability to accelerate to maximum speed in the shortest time seems to 

be essential for hunting success, giving it adequate stalking cover, which was proved to 

directly influence the distance traversed in the final charge (SUNQUIST, 1989).  To accelerate 

a mass to a high velocity quickly requires providing power to the limbs and having muscle 

origins farther out on the lever arm.  If high velocity can be achieved slowly, then muscle 

insertions can be located closer to the fulcra (HILDEBRAND, 1989).  Since pantherine felids do 

not maintain sustained chases but need to accelerate rapidly, the adaptations needed are 

different from those of cursors such as wolves or the cheetah.  Figure 5.2.10 illustrates this 

model on three species of the three hypothesized categories.  It is shown that the quick-

moving cheetah of group one has its Teres major muscle attaching very close to the inner 

lever arm of the humerus, while the same muscle for Smilodon of the third category attach 

much further outside.  The lion in turn is shown to be intermediate in this feature together 

with the other pantherine cats.  Surprisingly, the puma’s ratios are closer to the wolf’s (and 

thus not far behind those of A. jubatus) than to the extant cats of group two.  It has been 

suggested that the puma may bear some closer relationship to the cheetah, which was 

recently supported by studies of biomolecular structure of the puma, which suggests a split 

occurring some time after 3.5 Ma ago (TURNER & ANTÓN, 1996).  A resemblance with the 

cheetah can be seen in other comparisons as well and further elaborates this assumption.  

Nonetheless, muscle insertion areas on bones are sometimes hard to identify and not always 

a very reliable feature to predict the size of a muscle.  HAROLD et al. (1990) in fact pointed 

out, that the full area of muscle insertion is only possible in relatively few instances. 

 

Humerus, Cross Section: 

 The cross-sectional shape of a long bone shaft is modified by the mechanical stresses 

placed on it (ALEXANDER, 1968).   

The medio-lateral compressed outline of the midshaft certainly would reduce the potential 

bending in the antero-posterior plane.  This shape may also be related to the development of 

the large flexors on the humerus.   
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GONYEA (1976) determined the robustness of the anterior limb for the felids in a different 

approach, by plotting the cross-sectional area of the humerus against the length of the latter. 

He added a regression line for the points of the various taxa and showed that there is a 

strong correlation (r = 0.958) between these two measurements for the “forest felids”.  The 

data points for the cheetah clearly fall below this regression line, whereas those of Smilodon 

fall above it. 

 

 

 

Figure 6.2.4:  Relationship between cross-sectional area of the humerus and its length after GONYEA  
(1976) for various living and extinct cat species.  The cross-sectional area is calculated by multiplying 
the two widths of the shaft, and the measurements are taken at the junction of the middle and distal 
3rds of the shaft.  In this way, the deltoid crest is not included in the measurement.  The regression 
line is fitted to the data for the forest felids only using least squares method.  The dotted line 
represents the range of this ratio for the pantherine cats. 
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Skull Proportions: 

Skull proportions of Chapter 5.2 should clarify possible growth correlations within skull 

measurements and the front limb, which then can be further used for statistical analysis as in 

Chapter 5.3.   

 

Canine Length & Skull Width: 

In Figure 5.3.1 the skull width and canine height is plotted against the skull length.  The 

expectations are, that for canids of group one the canines have the relatively smallest height, 

since in these animals the retention of a longer tooth row forces the skull to stay long, making 

the canines appear small in comparison.  

The cheetah and the pantherine cats more or less are thought to have similar length 

ratios, though longer than those of the canids, while saber-toothed cats of course have the 

highest ratios with their elongated canines.  This effect is enhanced through a shortening of 

the skull by the loss of the third upper premolar teeth.   The chart in the figure proves this to 

be true.  On the other hand, the skull width is determined by the zygomatic arches.  Plotted 

against the length of the skull the outcome should be as following:  1. Canids with long 

slender skulls and relatively small masseter muscle that attach on the narrow zygomatic 

arches.  2. Modern cats including the cheetah with stronger masseter muscles and 

corresponding broader zygomatic arches and shorter skulls.  3. Smilodon with short and 

relatively narrow skull and comparatively weak masseter muscles.   

 

Canine Distance: 

The illustration below the latter discussed deals with variances between skull width and 

canine distance in the different postulated groups.  One might think that, from an allometric 

point of view, these two features should stand in strong correlation to each other, but it is 

primarily the development of the zygomatic arches that dominates this ratio.  In this regard, 

the relatively narrow skull in Smilodon apparently enhances a wider clearance for the 

canines in contrast to the wolf.  The wolf’s relative narrow skull obviously doesn’t 

compensate for a relatively wider clearance for the canines (see Figure 5.3.2).  For modern 

big cats the results are expected to be relatively equal, however, the cheetah falls slightly out 

of row with a quite close canine distance.   

 

Canine Shape: 

 Prey-killing behavior explains canine shape better than diet does, therefore the form of the 

canine reflects stresses incurred during biting (VAN VALKENBURGH, 1989).  Felids possess 

rounder and more robust canines than do canids because the killing bite of felids is deeper 
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and more forceful (EWER, 1973).  VAN VALKENBURGH & RUFF (1986) studied the canine 

strength characteristics among living and extinct canids as well as felids.  Their results 

indicate that felids have relatively stronger canines than canids, especially in bending about 

the antero-posterior (CX) rather than the medio-lateral (CY) axis.  Besides, they 

demonstrated by an analysis of jaw muscle moment arms, that felids also have relatively 

stronger bites than canids.  For the fossil sabertooths however, they showed that their 

canines are more similar in shape and strength characteristics to those of living canids than 

felids.  Since the data is restricted on morphometric length comparisons rather than on 

mechanical analysis, the results illustrated in Figure 5.3.2 don’t necessarily confirm with the 

results of VAN VALKENBURGH & RUFF.  Nevertheless, the charts indeed show a likewise basic 

pattern, where Smilodon and C. lupus both exhibit antero-posterior flattened canines in 

comparison to the more conical shaped canines of modern big cats. 

 

Dental Length: 

The dental length is in any mammal strongly correlated with the retention or the 

loss of the   premolar and molar teeth.  Cats have lost an array of teeth in the upper 

and lower jaw.  The dental bone has only one molar left, which forms the lower 

carnassial (M1), in addition to two smaller premolars (P3 & P4), of which in Smilodon 

P3 is reduced into a tiny cone.  Thus it is not surprising to find the longest jawbone in 

the canids, which have kept all four premolars and three molars, while Smilodon has 

the relatively shortest dentary of all the studied carnivores.  The extant big cats are 

all expected to fall slightly behind the ratios of Smilodon, which was verified in the 

outcome. 

 

Skull Length & Anterior Limb: 

The final comparison, illustrated in Figure 5.3.3, collates the skull lengths with the overall 

lengths of the anterior limb, which is comprised of the humerus, radius, and 3rd metacarpal.  

As pointed out in chapter five the cheetah exhibits extremely elongated front limbs.  It is easy 

to predict that it has to have a relatively small head in comparison.  The puma in turn has the 

relatively shortest anterior limbs as illustrated in Figure 5.2.3 thus its skull length is supposed 

to be longer, but not as long as in modern pantherine cats.  The closer relation to the 

cheetah might be the reason for a comparatively small head.  The pantherine cats of guild 

two are expected to show similar length ratios. However, the jaguar is conspicuous in having 

a relatively large head although its anterior limbs were shown to be quite alike the other cats 

of the same group.  For Smilodon and its short limbs, the size of the skull was thought to be 

proportionately large in contrast, but the illustration reveals that it is rather small in size 
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between those of F. concolor and modern big cats.  Obviously, the changes occurring with 

the development of large canines preferably enlarge the skull in height rather than in length 

(MARINELLI, 1937).  Besides, the short dental length of the saber is also evidence for a 

shorter skull as was mentioned before.  The wolf at last was expected to broadly resemble 

the average cat, since both, its head and limbs are long.          

Among all the species examined in this work it again should be recalled, that there is a 

significant added variance coefficient for the relative lengths of the anterior and posterior limb 

elements (see GONYEA, 1976) and that the variation for osteological characters in common 

usually falls between 4-6%. 
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7 HUNTING BEHAVIOR IN SMILODON 

Based on the anatomical and proportional differences examined in Smilodon, its hunting 

behavior must have been altered in some way or the other to the one observed in modern 

big cats.   

Before we get into this particular discussion however, one has to be confidential with the 

hunting behavior of Smilodon’s  closest extant relatives - the pantherine cats.   

Unlike other large predators such as the wolf or the spotted hyena, which essentially kill 

their prey by pulling it down and eating it while still alive, cats in general tend to dispatch their 

chosen victims first, before they start to consume it.  In cats, large claws and powerfully 

developed anterior limbs are ideally suited to catch prey and retaining a hold while wrestling 

it into a position where the canines may be employed in a bite (TURNER & ANTÓN, 1996).  

Canids lack retractile claws and their canines are less developed, so that sheer weight of 

numbers is often the most important element in bringing down prey. 

The precise hunting technique, which includes the method of capture and dispatch, 

depends on the size of the cat, its overall morphology and the size and type of prey.  

Moreover, the mode of hunting also depends upon the social structures observed in various 

felids, meaning if they hunt in prides or rather solitary.   

It is generally noticed that especially in cats, a strong interaction of innate and learned 

patterns of behavior is of great importance.  Cats develop an early interest in chasing 

anything that moves, and will go through an elaborate sequence of crouching, wriggling the 

hind-quarters, and pouncing (TURNER & ANTÓN, 1996).   However, what they seem less 

secure about is what to do with the object once they have seized it, although the neck region 

appears to be sought instinctively.  Female cats have been observed of bringing live prey for 

their kittens to practice capture and killing.  In addition, at a certain age the young offspring 

will join their mother in hunting, this way they get to learn what prey to take and how it is 

supposed to be killed.   

For modern pantherine cats, smaller prey is killed by a bite at the rear of the neck, thereby 

the upper canines drive between the vertebrae and severe the spinal cord (LEYHAUSEN, 

1965; SCHALLER, 1967 & 1972; GONYEA, 1976).  Larger animals like ungulates require 

different approaches.  They developed posteriorly directed horns along with an increase in 

length of the cervical spines, which possibly evolved, in part, for protection against predators.  

Prey animal of large size are rarely knocked over by the impact of the predators body; 

instead during the pounce, the hind feet of the felid usually do not leave the ground.  The 

prey is seized and the predator pulls the prey towards itself.  In this manner, as the victim is 

pulled down, the predator is able to maintain contact with the prey, and in doing so controls 
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the victim’s movements (LEYHAUSEN 1965b; SCHALLER, 1967 & 1972; KLEIMANN & 

EISENBERG, 1973).   

 
 

Figure 7.1:  Prey capture as seen on a lioness with wildebeest (after TURNER & ANTÓN, 1996). 

 

Prey is usually grabbed by the throat or the muzzle with a strong bite, at which it is aided by 

its long retractile claws and powerful front legs (see Figure 7.1 and 7.2).  Death results 

mostly from suffocation rather than a violent and bloody end (TURNER & ANTÓN, 1996).  This 

technique may be used to avoid the pointed horns that protect the nape of the neck in many 

ungulate prey species (GONYEA, 1976).   

The cheetah on the other hand is forced to employ a different hunting method, because its 

claws can’t be used as a grasping device, and its body proportions are that of a sprinter, lean 

and long.  However, like many of the other cats it is perfectly adept at the stalk to bring itself 

closer to its prey.  The final rush takes the form of a high speed chase, often over several 
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Figure 7.2:  Killing scenario – a lioness suffocates its prey by applying a bite on the muzzle area (after 
TURNER & ANTÓN, 1996).   See text for further information. 
 

hundred meters, during which the twists and turns of the usually small prey are relentlessly 

followed.  The capture is achieved at high speed, normally not by a leap onto the back of the 

animal but by clawing at one side of the rear of the prey and pulling backward in a complex 

and carefully coordinated maneuver.  This causes the prey to lose balance and collapse, and 

usually results in its tumbling over.  The large dewclaw on the inside of the cheetah’s front 

paw is employed in this technique, in effect “hooking” the back leg of the unfortunate animal.  

Finally, it will be seized by the throat and strangled (NOWAK, 1991).   

 

 

 
 
Figure 7.3:  Hunting sequence of a cheetah.  Contact with prey commonly occurs at very high speeds, 
and the cat throws its prey off balance by “hooking” a hind limb with the internal dew claw of its front 
paw ( after TURNER & ANTÓN, 1996).  
 

 

So far as the hunting behavior of fossil saber-toothed cats is concerned, we can probably 

assume that the same general principles would have operated as for pantherine cats.  



Jens Schmieder Page 67 02.07.2003 

Capture would be by stalk and a pounce, in conjunction of thicker vegetation, or perhaps by 

a stalk and a relatively short rush in more open terrain.  The actual killing scenario however, 

would have clearly varied from their modern relatives.   

It has generally been assumed that the large upper canines of Smilodon and other saber-

toothed cats were adaptations for attacking large, relatively thick-skinned prey such as 

ground sloths or proboscideans.  BAKKER (1996) argues that Tertiary sabertoothed cats and 

Jurassic allosaurid dinosaurs evolved convergently to prey on herbivore species that were 10 

or more times heavier than themselves.  The capability for taking larger prey would be 

advantageous for any predator within the size range of sabertooths since it would allow a 

potentially wider food niche for a similar sized non-sabertooth (EMERSON & RADINSKY, 1980).  

However, predator-prey size relationships are influenced from many factors primarily, 

whether food was a limiting resource or not.  Smilodon would have certainly eaten anything 

that it was able to catch including carrion.  

  Because of the relatively fragile nature of the sabers most researchers concluded that 

they were not employed on bony areas of their prey (AKERSTEN, 1985; TURNER AND ANTÓN, 

1996, V.VALKENBURGH, 1990;).  If they were used in an attack on a bony area, such as the 

back of the neck or posterior skull as GONYEA (1976) suggested, one saber would almost 

certainly contact bone before the other, resulting in considerable lateral torque and probable 

breakage (BOHLIN, 1947).  Repeated contact with bone would also cause wear on the tips of 

the canines.  VAN VALKENBURGH (1989) examined dental micro wear patterns in S. fatalis 

and concluded that the sabertooth consumed very little bone, actually avoided bone in order 

to protect its long canines from breakage.  To elude any risk of damage to the sabers the 

capture very likely involved bringing prey down to the ground before biting at it, unlike the 

living pantherine cats with their rounded canines, which often bite the standing and struggling 

prey animal in the throat, the muzzle, or even the rump (see Figure7.1).  Such behavior 

would have been too risky for the long laterally compressed, blade-like canines of Smilodon. 

Furthermore, once the prey lies on the ground it will no longer try to defend itself or put up a 

fight, since it more or less falls in a state of shock (SCHALLER, 1972).  In this stage the claws 

and powerful front limbs of the predator would have been easily able to control large and 

even struggling prey.  More importantly, Smilodon was now able to quickly orienting itself to 

the abdomen or the throat and employ a fatal canine shear bite without contacting bone, 

causing a fatal wound in conjunction to considerable blood loss, which finally would have led 

to death.   
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Figure 7.4:  Prey capture of two male lions.  The killing of larger and defensive prey, such as this 
buffalo requires a lot of experience, enormous power and stamina (after TURNER & ANTÓN, 1996). 
    
 

Functional analysis of the gape by EMERSON & RADINSKY (1980) revealed that sabertooths 

had similar clearance between upper and lower canines as do modern felids, but, as KURTEN 

(1952) demonstrated, it is unlikely that sabertooth canines penetrated any deeper than do 

modern felid canines.  Rather, their advantage was in creating a larger superficial wound, as 

would be achieved by a canine shear bite on convex body surfaces thereby severing critical 

blood vessels as ACKERSTEN (1985) suggested. 

The morphology of the posterior cervicals, especially that of the transverse processes, 

indicates increased leverage for several neck muscles, including the scalenes, but also for 

other muscles that turn the neck up, or to one side (TURNER & ANTÓN, 1996; ANTÓN & 

GALOBART, 1999).  This suggests that in combination with a relatively long neck in Smilodon 

(MERRIAM & STOCK, 1932) these animals had a greater range of vertical and lateral 

movements of the head relative to the trunk, than pantherine cats of comparable size.  

ANTÓN & GALOBART (1999) further argue that such a morphology would have allowed a 

sabertooth cat to precisely and quickly orientate its head for a bite to a specific area of the 

body of large prey species and that it in deed fits well with a canine shear bite killing scenario 

(see Figure 7.5 below). 
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Figure 7.5:   Reconstruction of Homotherium latidens applying the canine shear-bite to the throat of a 

horse, while holding it down to the ground.  A. Superior view of cat and prey, showing angle between 

the axis of the cat’s body and head.  B. Detail of the skull and anterior vertebral column, showing 

lateral flexion of the neck and trajectors of the fibers of some muscles that contribute to such lateral 

flexion (after ANTÓN & GALOBART, 1999). 

 
 

The use of the anterior limb as a hunting weapon and its impact on forelimb anatomy 

should be further elucidated.  

HILDEBRAND (1954) found that the radius and ulna are better adapted to a cursorial 

habitus in the canids than in other carnivorans.  For those canids that pursue their prey over 

long distances, the ability to maintain a high constant speed is seemingly important. HOWELL 

(1944) showed that an elongation of the distal limb elements is a good indicator of cursorial 

specialization.  Chapter 5 displays the lengthening of distal limb elements for the wolf and 

cheetah compared to those of pantherine- or saber-toothed cats.  

As the length comparisons in Chapter 5 demonstrated, Smilodon’s  distal anterior limb 

segments are extremely shortened and more massive as those of modern big cats.  This 

shortening and the presence of powerful adductor muscles improve the stability of the cat 

when it is wrestling with prey.  Among the most important muscles involved in such an 

activity are the flexors and extensors of the forepaw, which form the major mass of the 

animal’s forearm; the muscles that adduct, or pull in the arm, such as the pectoralis; and 

those that abduct, or pull out, the arm, such as the deltoid.  Evidence from the insertion areas 

on the bones indicate that all these muscles were extensively developed in the smilodontine 

cats (TURNER & ANTÓN, 1996). 

The flexion of the forearm is a further important movement and is carried out by the biceps 

muscle.  The combined effects of the Teres major and the Latissimus dorsi aid its action.  
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The first arises from the posterior surface of the scapula, 29 and the second from the 

backbone and lumbar fascia.  They join together and insert on the inside of the humerus.  

Since the back of the smilodontines is shorter than in pantherine cats, the contraction of the 

Latissimus dorsi is more effective, as is the pull of the large muscle masses of the back lying 

under the lumbar fascia.  Moreover, as demonstrated in Figure 5.2.10, the Teres major 

muscle inserts farther away from the shoulder joint on the inside of the humerus as for cats 

of group one and two, indicating a restricted action of movements of the joint, which in turn 

imposes limits on the rate of stride (HILDEBRAND, 1989).  Nevertheless, this anatomical 

feature finds its advantages for a quicker and more powerful acceleration to maximum 

speed, which would be typical for well-adapted stalkers.   This serves as a further indication 

for a well-adapted stalker that ambushes its prey from concealment.  Acceleration to 

maximum speed was probably reached in a very short time.  GONYEA (1976) showed that the 

saber-toothed felids possessed similar morphological features in their middle- and distal 

phalanx than modern cats, which suggests that the claws of the former were completely 

retractile as well.  As a rule, the larger the prey the more important are fully retractable claws 

(LEYHAUSEN, 1965; GONYEA & ASHWORTH, 1975), which, in conjunction to the robust 

forelimbs, serve as an indication that the prey taken by S. fatalis and X. hodsonae could 

have been substantially heavier than their own body weight.  If Smilodon formed prides as 

was suggested by several authors (ACKERSTEN, 1985; TURNER & ANTÓN, 1996; et al) prey 

size could have been even larger and thus enhancing the assumption that it was actually 

hunting young proboscideans or other contemporary animals of the mega fauna, as noted 

above.  To knock over or pull down large prey, the forepaws of the predator require some 

freedom in their movements (supination & pronation), because prey animals are constantly 

moving and trying to free themselves from the employed grip.  Retractile claws aid to hold on 

to and immobilize prey, but to attain a perfect position of the forepaws in the first place and to 

maintain it on the body of the animal, a minimum prone- supine movement is of great 

importance for cats that deal with large prey.  The orientation of the radial notch 30 of the ulna 

was found to face laterally with an angle of 65 º in Smilodon, which is about 15 º more than 

for modern pantherine cats, suggesting a greater freedom of a prone- supine motion in the 

forepaws.  Moreover, a higher circular shape of the radial head in Smilodon provided 

additional advantages for such movements.  

                                                 
29 as illustrated in Figure 5.2.10 
30 the proximal radio-ulnar joint 
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Figure 7.5:  Postulated prey seizing in sabertoothed cats and the different muscles involved in such 
an action.  Note the strong forepaws, the Latissimus and Teres major muscles (after TURNER & ANTÓN,  
1996). 
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In the posterior limb, well developed and powerfully build adductor muscles in conjunction 

to the shortened metatarsals, must have improved the stability of the cat when it was 

wrestling with its prey.  Furthermore, Smilodon’s  relatively thicker transversal breadth of the 

tibia (LT) provided it with extra strength and stability in the articular knee joint.  The 

calcaneus was also shown to be relatively longer than for pantherine cats and must have 

improved its ability to jump and leap onto the back of a prey animal.  Additionally, since 

Smilodon couldn’t sustain long chases, it relied on stalking its prey from concealment thereby 

trying to get as close as possible.  A long leaping ability would have been definitely beneficial 

in the first phase of the pursuit to gain on distance to its prey.  
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8 CONCLUSIONS 

The anterior- and posterior limbs, the short back, and the overall skull peculiarities of 

Smilodon fatalis all possess morphological traits related to deal with large prey.  Particularly 

the front limbs exhibit proportions that are unparalleled in modern pantherine cats.  Radius, 

ulna, and metacarpals are shown to be extremely shortened, suggesting functional 

advantages to seize and struggle with bigger prey.  Discrete large muscle attachment areas 

on the humerus for the Teres major and Latissimus dorsi indicate that these muscles insert 

farther away from the articular shoulder joint than for extant cat members, decreasing the 

amplitude of arc of movement while increasing its force.  Together with a shorter back, a 

large cross-sectional area of the humerus and huge pectoralis muscles attaching on the 

humeral crest, strong flexors and extensors of the front paws, etc, these formidable cats 

were equipped to pull down and immobilize prey of their contemporary megafauna.   

The radial head, which articulates with the ulna on the radial notch and the capitulum on 

the distal end of the humerus is found to be more circular than in any other examined cat 

species.  The radial notch in turn displays an angle that exceeds those of modern pantherine 

cats of about 15 º and is clearly faced laterally.  The wide angle of the olecranon fossa on the 

distal humerus, which articulates with the olecranon of the ulna, provides more clearance 

and play in the forearm than in any other living feline.   

The hind limbs are shown to be similarly arranged in morphology to the front limbs in 

order to stabilize the body of the predator, which would have to withstand great forces during 

a fight.  Tibia and metatarsals are shorter than for any modern representative.  However, in 

comparison to the anterior extremity they were much more gracile and restricted in 

movement.  Moreover, the knee joints appear to be stronger and the long length of the 

calcaneus indicates good jumping abilities, although the posterior limbs reveal to be relatively 

long against the anterior limbs.   

Smilodon’s  elongated canines, its long muscular neck, and shortened, sturdy limb 

proportions and peculiarities make it to one of the most terrifying predators of prehistoric 

times, that was perfectly equipped to deal with large prey. 

Factorial analysis proved a strong correlation between the development of sabertooth 

canines and a strengthening in the anterior limbs.  Statistical analysis revealed three different 

guilds for the studied cat species:    

1. Cursors, with slender and elongated limb proportions, a short calcaneus, muscle insertions 

that attach closer to the relatively weak articular joints, which in turn show restrictions in their 

maneuverability, non-retractile claws, etc.  The cheetah and wolf belong to this category.  

2. Pantherine cats as the tiger, lion, jaguar, leopard, and cougar, of which all more or less 

show the same morphology and proportions.  The exception is the puma, which seems to 
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share a common ancestry with the cheetah.  However, they all possess retractile claws, 

relatively short and powerful limb proportions compared to those of guild one; muscle 

attachments that insert closer to the joints, etc.  In general they were shown to be 

intermediate in their morphology between guild one and three. 

3. Saber-toothed cats with elongated canines, narrow skull, even shorter and more 

powerfully build extremities, etc (see above).    

The above observations do not support GONYEA’S previous idea about the relationship 

between body proportions and habitat preferences, but they fit well with the relations 

between movements in the elbow joint and the shape and size of the canines. 
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APPENDIX 

 

 A. jubatus 

SZ 3797 

A. jubatus  

(m) M. 202  

P. tigris 

SZ 3769 

P. tigris (f) 

SZ 3728 

P. pardus (m) 

 SZ 4227 

P. pardus (f) 

M. 203 

P. pardus (m) 

SZ 7301 

P. leo (f) 

SZ 3280 

P. leo (m) 

SZ 7497 

Skull:          

SL 17,5 16,4 32,6 31,1 23,6 20,5 23,6 30,7 35,3 

DL 11,78 10,55 22,6 20,3 15,0 12,9 16,2 21,2 23,65 

SW 12,56 12,3 23,25 20,8 15,1 13,9 16,1 21,7 24,6 

CD 4,5 4,04 9,36 8,8 5,85 5,0 6,23 8,16 9,83 

CH 2,83 1,65 5,06 4,85 3,55 - 3,65 3,96 4,9 

CX 1,0 0,85 2,6 2,31 1,5 - 1,77 1,90 2,31 

CY 0,8 0,68 2,0 1,75 1,2 - 1,38 1,43 1,77 

Humerus          

GL 24,05 19,4 31,15 32,6 22,8 20,7 23,9 31,55 34,5 

Li 6,0 4,83 11,02 12,8 7,69 6,53 8,3 11,2     12,7 

Bd 4,99 3,22 7,98 7,8 5,87 4,91 6,1 8,08 9,99 

Bt 2,98 2,39 5,28 5,5 4,0 3,25 4,16 5,56 6,35 

T. major 3,25 2,96 5,1 4,6 3,92 2,7 4,05 4,46      6,82 

Radius          

GL 24,0 19,5 25,15 27,4 18,4 17,5 20,1 28,3 30,8 

BP 2,05 1,7 3,67 3,8 2,56 2,12 2,65 3,65 4,18 

Q r 1,48 1,36 2,68 2,82 1,85 1,97 1,96 2,76 3,13 

Ulna          

GL 27,8 22,7 31,3 33,2 23,0 21,35 25,0 33,6 36,3 

LO 2,98 2,3 5,41 4,8 3,82 3,05 3,9 5,5 7,1 

Mtc          

GL 8,2 7,55 10,6 11,1 8,02 7,21 8,25 10,89 12,2 

Femur          

GL 26,6 21,6 35,1 36,4 24,85 23,75 26,0 35,0 37,3 

GLC 26,45 21,1 34,8 36,2 24,6 23,4 25,7 34,3 36,8 

BP 5,14 4,4 7,66 8,3 5,64 4,38 5,67 8,4 9,28 

Bd 4,56 3,98 7,14 7,31 4,96 4,32 5,38 7,04 8,12 

Tibia          

GL 26,85 22,2 29,4 32,1 23,8 21,7 24,2 29,85 32,6 

LT 5,56 4,7 7,72 7,36 5,66 4,38 5,71 8,0 9,0 

Astragalus          

GL 3,0 - 5,32 5,64 4,14 3,8 4,0 5,25 5,0 

Calcaneus          

GL 7,1 6,34 9,34 10,65 6,56 6,3 7,5 10,24 10,5 

Scapula          

GLP 3,43 2,83 6,16 5,75 3,9 3,47 4,26 5,89 6,51 

HS 17,7 14,6 23,5 24,7 18,1 16,0 18,5 25,7 26,85 

T. major 7,0 5,64 8,0 9,05 5,29 4,88 5,71 8,1 10,51 

Mtt.          

GL 10,7 9,65 12,2 12,8 9,69 8,76 9,3 12,59 13,2 
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 P. leo (m) 

6805 * 

P. onca (f) 

Mam. 199 

F. concolor 

(f) Mam. 198 

S. fatalis  

 

C. lupus  

Mam. 190 

Skull:      

SL 36,35 24,5 17,2 29,3 23,0 

DL 25,1 16,05 11,6 18,9 17,5 

SW 27,0 16,5 12,1 18,0 12,3 

CD 9,79 6,53 4,63 8,45 4,47 

CH 5,03 3,36 2,31 14,6 * 2,8 

CX 2,45 1,71 1,3 4,0 1,6 

CY 1,82 1,39 1,0 1,95 0,8 

Humerus      

GL - 22,1 18,5 32,7 19,6 

Li - 8,25 5,58     ~13,5 5,85 

Bd - 6,14 4,4 10,54 4,7 

Bt - 3,91 2,77 6,8 3,1 

T. major - 3,0 2,84      ~6,3 2,87 

Radius      

GL - 18,1 15,3 25,8 19,95 

BP - 2,6 1,86 5,1 2,45 

Q r - 1,9 1,44 4,0 1,69 

Ulna      

GL - 22,25 18,8 31,6 23,5 

LO - 4,2 3,5 5,29 3,15 

Mtc      

GL - 7,25 6,76 8,3 8,85 

Femur      

GL - 24,4 22,35 35,6 21,35 

GLC - 24,35 21,7 35,8 21,7 

BP - 5,74 4,57 9,41 5,08 

Bd - 5,41 4,2 7,53 4,57 

Tibia      

GL - 21,2 19,7 27,0 21,9 

LT - 5,73 4,72 7,97 4,78 

Astragalus      

GL - 3,45 2,61 5,25 3,95 

Calcaneus      

GL - 6,7 6,0 9,74 6,1 

Scapula      

GLP - 4,25 3,32 8,34 4,91 

HS - 17,1 13,4 33,6 14,2 

T. major - 4,68 5,5 9,39 4,0 

Mtt.      

GL - 8,77 8,47 9,45 9,41 

 

Table 5.1:  Measurements taken from skeletal material after Van den Driesch. 

 

Explanations:  SL=skull length; DL= dental length; SW=skull width; CD= canine distance; CH= crown 
height; CX=crown, antero-posterior diameter; CY=crown, medio-lateral diameter; GL= greatest length; 
Li=inner lever of T.major; Bp=proximal greatest breadth; Bd=distal greatest breadth; Bt=greatest 
breadth of trochlea; Qr=antero-posterior breadth of radial head; GLC= greatest length of caput 
femoris; LT=max. transversal depth of distal end of tibia; HS=height spina scapulae; GLP= greatest 
length of processus articularis. 
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Illustrations of complete skeletons of the three various cat guilds. 

 

 
Panthera leo (atrox) – lion of the Rancho La Brea tar pits –  represents the basic felid phenotype (guild 
two). 
 
 
 
 
 

 
S. fatalis – Rancho La Brea (guild three) 
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Felis concolor – puma or mountain lion (possesses traits of both guild one and two). 
 
 
 

 
 
 
Acinonyx pardinensis – cheetah (guild one). 
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Canis lupus – the wolf. 
 
 
 
 
 
 
 
 
 
 
 
 
 




