Why conserving the Balkan lynx

A molecular-genetic point of view

Christine Breitenmoser-Würsten and Gabriela Obexer-Ruff

- 1. Introduction
- 2. Units
- 3. Origin of released animals
- 4. Small populations

Breitenmoser & Breitenmoser-Würsten 2008

4			
	NIR		

mtDNA

Hellborg et al. 2002. Differentiation and levels of genetic variation in northern European lynx (*Lynx lynx*) populations revealed by microsatellites and mitochondrial DNA analysis. Conservation Genetics 3, 97-111.

- Gugolz et al. 2008. Historical DNA reveals the phylogenetic position of the extinct Alpine lynx. Journal of Zoology 275, 201-208.
- Sindičić M, T Gomerčić, A Galov, P Polanc, Đ Huber, A Slavica: Repetitive sequences in Eurasian lynx (*Lynx lynx L*.) mitochondrial DNA control region (review in process)
- Schmidt et al. unpubl. data. Genetic diversity of lynx in Eastern Europe.

nuclear markers

Hellborg et al. 2002.

Rueness et al. 2003. Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx. Molecular Ecology 12: 2623-2633.

Breitenmoser-Würsten et al. Lynx in Europe.

1. INTRODUCTION	2. UNITS	3. ORIGIN OF RELEASED ANIMALS	4. SMALL POPULATIONS

Sindičić et al.

A single mtDNA haplotype was found among samples from Dinarics (N=29) and Carpathians (N=6), matching to GenBank sequence AY034816, found by Hellborg *et al.* (2002) in Estonia and Latvia. Gugolz *et al.* (2008) confirmed the presence of this haplotype in Carpathian Mountains and reintroduced Alpine population.

 \rightarrow H4

Table 3 Variable sites of two non-overlapping fragments (157 and143 bp) of the control region in the Eurasian lynx Lynx lynx

	1	1	1	1	0	0	0
	0	5	5	5	0	1	8
Haplotype	4	0	6	7	9	6	9
H1	A	Т	G	Т	С	A	С
H2		С	·	С			
H3		С	·	С		G	
H4		С	·	С			Т
H5				С	Т		Т
H6				С			
H7	С		A	С	Т		Т

Haplotypes H1-H4 have been described previously (Hellborg *et al.*, 2002).

Distribution of forests and lynx in central Europe and sampling sites for microsatellite study

1. INTRODUCTION

Schmidt et al. 2009, 2011

Haplotype	Sca	ndina	avia	Finr	nland		Balt	tics		NEI	Polar	nd	Car	pathi	ians	Ball	kans	
	Н	S	G	н	S		Н	S	G		S		Si	S	G			G
H1	X	Х	Х	Х			Х				Х							
H2		•		X		•	Х	Х	Х		Χ							
Н3				Х		•	Х	X										
H4							Х	Х			Χ		Х	Χ	Х			
H5																		Х
Н6																		
H7																		Х
H8		4				•		Х										
Н9						*		Х										
H10								Х			Х							
H11											Χ							

H Hellborg et al.

S Schmidt et al.

Si Sindicic et al.

G Gugolz et al.

1. INTRODUCTION	2. UNITS	3. ORIGIN OF RELEASED ANIMALS	4. SMALL POPULATIONS
-----------------	----------	-------------------------------	----------------------

Neighbour-joining tree based on kinship coefficient 1-(kf) (mean of 1000 bootstrap replicates)

Taberlet et al. 1998

Schmitt 2007

 \rightarrow increasing evidence for extra-Mediterranean ice-age refugia in Europe

1. INTRODUCTION

FCA Allele frequences

- only few mtDNA haplotypes for Eurasian lynx in Europe
- units (consistent results from mtDNA and nuclear DNA)
 - Carpathian Mts
 - ➢ Balkans
- ?? N Europe
- discrepancy for NE Europe
- need to analyse more samples in Europe and expand to outside of Europe to complete the phylogeography
- look at other segments of the mtDNA
- all reintroduced populations descend from animals from the Carpathan Mts (except Harz and Kampinos)

Genetics for conservation

Mean reasons for the loss of biological diversity Destruction/loss of habitat→ fragmentation over exploitation hybridisation (e.g. wildcat)

Consequences

\rightarrow small isolated populations

- \rightarrow loss of genetic diversity (rare alleles)
- \rightarrow inbreeding (loss of adaptability)
- \rightarrow risk of local extinctions

Loss of genetic diversity

Bottleneck

strong decline of poplation size (natural & anthropogenic reasons)

Consequences

Loss of rare alleles Change in allele frequencies

Occurrence

immigration through corridorre-introduction (with few animals)re-expansion of a relict population(population can recover numerically, but not genetically)

Loss of genetic diversity

Founder effect

Founding of a population with a random selection of alleles (limited selection from a gene pool of a large population)

Consequences

Loss of alleles Allele frequencies of the new population differ from the source population

Occurrence

Re-introduction of a locally extinct species Immigration through a corridor (geographic limitation)

Loss of genetic diversity

Genetic drift

Fast and strong change in allele frequencies

Consequences

Loss of (rare) alleles Random change in allele frequencies Differentiation of populations that origin from the same source Influence stronger in small populations

Occurrence

Re-introduction of locally extinct species

Loss of gentic diversity

Inbreeding

Mating of partners who are closer related than expected

Consequences

Loss of alleles increased in homozygosity can lead to inbreeding depression (e.g. Florida panther)

Occurrence

In small populations Re-introduction in locally extinct species

Signs of inbreeding depression

	Florida panther	Iberian lynx	Eurasian lynx in Switzerland	Wolf in Sweden
Increase in	FeLV	FeLV	No	No
susceptibility to	No ?	Yes ?		
infectious				
diseases				
Malformations	kinked tail		No	No?
	cow lick			
	cryptorchidism			
	atrial septum defect			
	YES			
Reproductive	sperm counts \downarrow	litter size \downarrow	No?	litter size \downarrow
problems	sperm anomalies	sperm quality \downarrow		Yes
	Yes	Yes		
Histological		glomerulonephritis	cardiomyopathy	
lesions		lymphoid depletion	Yes?	
		Yes?		

When do we need to worry about inbreeding?

• F_{it} is approaching 0.25 (everyone is a sibling of each other). This value needs to be compared to outbred populations as it is relative.

• Ne (effective population size) is below 50. This value can be for a single population or a metapopulation.

Solution: Genetic management

Inbreeding: mating among relatives

$$(1-F_{it})=1-F_{st})(1-F_{is})$$

All measures of IB are relative!

Genetic variability of lynx populations in Europe based on 22 microsatellites. H_{exp} = expected heterozygosity, H_{obs} = observed heterozygosity.

Population	Ν	Тур	H_{exp}	H_{obs}	Alleles/Locus
Autochthonous populations					
Norway	30	а	0.606	0.575	4.32
Sweden	30	а	0.558	0.528	4.00
Finland	30	а	0.671	0.667	5.05
Latvia	29	а	0.686	0.713	5.41
Estonia	32	а	0.679	0.713	5.00
NE Poland	8	а	0.567	0.601	3.59
Balkans	10	а	0.481	0.420	2.68
Carpathian Mountains	31	а	0.633	0.592	4.59
Reintroduced populations					
Swiss Alps	35	r	0.448	0.460	2.45
Jura Mountains	32	r	0.517	0.517	2.91
Vosges Mountains	5	r	0.581	0.573	2.77
Dinaric Range (SLO, HR)	32	r	0.494	0.518	3.09
Bavarian-/Bohemian Forest	14	r	0.529	0.501	3.23

Signs of a bottleneck

Population	One-tailed-Wilcoxon-Test	L-Shape
Carpathian Mts	0.50	normal L-shaped distribution
Alps	< 0.001	shifted mode
Jura Mts	< 0.001	shifted mode
Dinaric range	0.09	normal L-shaped distribution
Vosges Mts	-	too few samples
Bohemian-Bavarian Forest	<0.001	shifted mode
Norway	0.251	normal L-shaped distribution
Sweden	0.500	normal L-shaped distribution
Finland	0.194	normal L-shaped distribution
Estonia	0.131	normal L-shaped distribution
Latvia	0.316	normal L-shaped distribution
Bialowiezia		too few samples
Balkans	<0.001	shifted mode

Material

• DNA of high quality and quantity

Material

• DNA of low quality and quantity

→ Whole blood in tube with EDTA

- Tube with 95% alcohol or deep freeze
- → Tube with 95% alcohol
 - or dry in container
 - or deep freeze it
 - Paper envelop, not plastic!